Language Classification with Naive Bayes in Python

4.6
142 個評分
提供方
Coursera Project Network
5,681 人已註冊
在此指導項目中,您將:

H​ow to clean and preprocess data for language classification

H​ow to train and assess a Multinomial Naive Bayes Model

H​ow to use subword units to counteract the effects of class imbalance in language classification

Clock60-75 minutes
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1-hour long project, you will learn how to clean and preprocess data for language classification. You will learn some theory behind Naive Bayes Modeling, and the impact that class imbalance of training data has on classification performance. You will learn how to use subword units to further mitigate the negative effects of class imbalance, and build an even better model.

您要培養的技能

StatisticsMachine LearningNatural Language Processing

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Exploratory data analysis of raw data, as well as some basic visualization

  2. Data cleaning and preprocessing relevant for task

  3. Theory behind and training of a Multinomial Naive Bayes Model

  4. M​aking adjustments to model to take into account class imbalance using theory behind Naive Bayes

  5. U​sing subword units to further counteract class imbalance and improve model performance

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

講師

審閱

來自LANGUAGE CLASSIFICATION WITH NAIVE BAYES IN PYTHON的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心