Learn a variety of methods for preprocessing methods for eliminating noise from text data, and lexicon normalization
Implement tokenization methods from scratch in Python code
Utilize open-source libraries such as NLTK to implement techniques such as Part Of Speech tags, Named Entity Recognition, and TF-IDF in Python code
In this 1-hour long project-based course, you will learn basic principles of Natural Language Processing, or NLP. NLP refers to a group of methods for parsing and extracting meaning from human language. In this course, we'll explore the basics of NLP as well as detail the workflow pipeline for NLP and define the three basic approaches to NLP tasks. You'll get the chance to go hands on with a variety of methods for coding NLP tasks ranging from stemming and chunking, Named Entity Recognition, lemmatization, and other tokenization methods. You'll be introduced to open-source libraries such as NLTK, spaCy, Gensim, Pattern, and TextBlob. By the end of this course, you will feel more acquainted with the basics of the NLP workflow and will be ready to begin experimenting and prepare for production-level NLP application coding. I would encourage learners to experiment with the tools and methods discussed in this course. The learner is highly encouraged to experiment beyond the scope of the course. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:
Become familiar with the NLP workflow
Understand the limitations of specific NLP techniques and how to overcome them by leveraging other techniques
Review a handful of open-source Python libraries that are useful for NLP-related tasks
Tokenize words in a sample text by hand using the Byte Pair Encoding (BPE) method
Utilize multiple noise removal techniques
Utilize several lexicon normalization techniques such as stemming and lemmatization
Make use of object standardization methods, named entity extraction, and Part of Speech Tagging
Learn how to utilize chunking and chinking methods
Utilize methods such as WordNet, Bag of Words, and TF-IDF (Term Frequency — Inverse Document Frequency) to extract meaning from text
您的工作空間就是瀏覽器中的雲桌面,無需下載
在分屏視頻中,您的授課教師會為您提供分步指導
如果我購買指導項目,會得到什麼?
購買指導項目後,您將獲得完成指導項目所需的一切,包括通過Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。
指導項目可在台式設備和移動設備上學習嗎?
由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。
指導項目的講師是誰?
指導項目講師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。
我能在完成指導項目後從中下載作品嗎?
您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。
我能夠退款嗎?退款政策是如何規定的?
指導項目不符合退款條件。 請查看我們完整的退款政策。
有助學金嗎?
指導項目不提供助學金。
我能旁聽指導項目並免費觀看視頻部分嗎?
指導項目不支持旁聽。
我需要具備多少經驗才能做這個指導項目?
您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的講師會逐步為您提供指導。
我能直接通過 Web 瀏覽器來完成此指導項目,而不必安裝特殊軟件嗎?
是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。
指導項目的學習體驗如何?
您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有講師逐步指導您完成項目。
還有其他問題嗎?請訪問 學生幫助中心。