Implement Real Time Analytics using Azure Stream Analytics

提供方
在此指導項目中,您將:

1. Setup different project components like SQLDB, event hub, stream analytics job

2. Configure Stream Analytics job input, output & reference input

2 hours
中級
無需下載
分屏視頻
英語(English)
僅限桌面

In this project, we are going to see how to "Implement Real Time Analytics using Azure Stream Analytics" Data processing is broadly categorized into two main categories: Batch processing & Real time processing. We are going to focus on real time data processing and Azure Stream Analytics is a popular service which is used to process and perform analytics on real time data stream. Hence , in this project we are going to see with an example how to implement a solution using Azure Stream Analytics and process real time stream of data. Pre requisites: 1. Azure subscription account(its preferred to have owner level access on the subscription account) Here is a brief description of the tasks we are going to perform in this project: Task1: Understand the Project Scenario In this task, we are going to see an overview of the project to be implemented and also the different components involved in this project and how they are linked to each other Task2: Setup the project environment In this task, we are going to create Azure Event Hub, Azure SQL Database, download and install Real Time Data Generator App. Task3: Configure the different components created in previous task In this task, we are going to connect the live data generator app with the event hub and also create the output and reference tables in Azure SQL Database Task4: Configure Azure Stream Analytics Job In this task, we are going to configure the input, reference input and output in Azure Stream Analytics Job Task5: Configure Query in Stream Analytics job In this task, we are going to write the query in Stream Analytics job which is used to process, analyze and transform the source data which will be received from event hub. Also, we will run the Stream Analytics job to see a demo of how it processes the input data from event hub and loads the data in output table in SQL database. Task6: Configure reference input in Stream Analytics job In this task, we are going to see how to use the reference input in the query of Azure Stream Analytics job. Also, we will run the Stream Analytics job to see a demo of how it processes reference input and loads data in output table in SQL database

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Task1: Understand the Project Scenario

  2. Task2: Setup the project environment

  3. Task3: Configure the different components created in previous task

  4. Task4: Configure Azure Stream Analytics Job

  5. Task5: Configure Query in Stream Analytics job

  6. Task6: Configure reference input in Stream Analytics job

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

購買指導項目後,您將獲得完成指導項目所需的一切,包括通過 Web 瀏覽器訪問云桌面工作空間,工作空間中包含您需要了解的文件和軟件,以及特定領域的專家提供的分步視頻說明。

由於您的工作空間包含適合筆記本電腦或台式計算機使用的雲桌面,因此指導項目不在移動設備上提供。

指導項目授課教師是特定領域的專家,他們在項目的技能、工具或領域方面經驗豐富,並且熱衷於分享自己的知識以影響全球數百萬的學生。

您可以從指導項目中下載並保留您創建的任何文件。為此,您可以在訪問云桌面時使用‘文件瀏覽器’功能。

指導項目不符合退款條件。 請查看我們完整的退款政策

指導項目不提供助學金。

指導項目不支持旁聽。

您可在頁面頂部點按此指導項目的經驗級別,查看任何知識先決條件。對於指導項目的每個級別,您的授課教師會逐步為您提供指導。

是,您可以在瀏覽器的雲桌面中獲得完成指導項目所需的一切。

您可以直接在瀏覽器中於分屏環境下完成任務,以此從做中學。在屏幕的左側,您將在工作空間中完成任務。在屏幕的右側,您將看到有授課教師逐步指導您完成項目。