Imbalanced-learn: modelos de ML con datos desequilibrados

提供方
Coursera Project Network
在此指導項目中,您將:

Aprender que son los datos desbalanceados

Aplicar técnicas de under-sampling y over-sampling

Conocer las técnicas para tratar con datos desbalanceados

Clock2 horas
Beginner初級
Cloud無需下載
Video分屏視頻
Comment Dots西班牙語(Spanish)
Laptop僅限桌面

Este proyecto es un curso práctico y efectivo para aprender que es el desbalanceo de clases en Machine leraning y como tratarlo. Aprenderemos las técnicas más avanzadas para trabajar con datos desbalanceados como: bSMOTE, ADASYN, SMOTEEN, etc. También aprenderemos a generar modelos capaces de trabajar con datos desbalanceados. Una gran parte de los problemas de clasificación utilizan datos debalanceadas. Si no se tratan estos casos estaremos generando modelos que no estén funcionando correctamente, pese a que a priori parezca que si. Por eso, en este curso aprenderemos a como tratar este tipo de datos.

您要培養的技能

  • ADASYN
  • SMOTE
  • Machine Learning
  • Python Programming
  • Imbalanced-learn

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introducción al desbalanceo de clases

  2. Aplicando técnicas para trabajar con datos desbalanceados

  3. Balanceo aleatorio

  4. Under-sampling

  5. Over-sampling

  6. Over-sampling seguido de under-sampling

  7. Modelos para datos desbalanceados

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心