Hierarchical Clustering using Euclidean Distance

提供方
Coursera Project Network
在此指導項目中,您將:

Understand the importance and usage of the hierarchical clustering using skew profiles.

Locate and process the viral cDNA genome files to calculate the skew profiles.

Understand the theory for using the Pythagorean equation to calculate the Euclidean distance. And apply that using python to build a linkage matrix.

Understand how errors occur, how to avoid them, and resolve their sources.

ClockAbout 75 minutes required for the project and 45 for the other materials (reading and assignment).
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

By the end of this project, you will create a Python program using a jupyter interface that analyzes a group of viruses and plot a dendrogram based on similarities among them. The dendrogram that you will create will depend on the cumulative skew profile, which in turn depends on the nucleotide composition. You will use complete genome sequences for many viruses including, Corona, SARS, HIV, Zika, Dengue, enterovirus, and West Nile viruses.

您要培養的技能

Python ProgrammingGenomicsplotting

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Task 1: Getting Started with Hierarchical Clustering

  2. Task 2: Locate and Process The Data Files

  3. Task 3: Understand The Result Dataset

  4. Task 4: Hierarchical Clustering - Metric

  5. Task 5: Hierarchical Clustering - Ordering & Methods

  6. Task 6: Dendrogram Plotting

  7. Task 7: Dendrogram - Analysis

  8. Task 8: Errors to Avoid

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心