Fine Tune BERT for Text Classification with TensorFlow

4.5
93 個評分
提供方
Coursera Project Network
5,585 人已註冊
在此免費指導項目中,您將:

Build TensorFlow Input Pipelines for Text Data with the tf.data API

Tokenize and Preprocess Text for BERT

Fine-tune BERT for text classification with TensorFlow 2 and TensorFlow Hub

在面試中展現此實踐經驗

Clock2.5 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

This is a guided project on fine-tuning a Bidirectional Transformers for Language Understanding (BERT) model for text classification with TensorFlow. In this 2.5 hour long project, you will learn to preprocess and tokenize data for BERT classification, build TensorFlow input pipelines for text data with the tf.data API, and train and evaluate a fine-tuned BERT model for text classification with TensorFlow 2 and TensorFlow Hub. Prerequisites: In order to successfully complete this project, you should be competent in the Python programming language, be familiar with deep learning for Natural Language Processing (NLP), and have trained models with TensorFlow or and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

必備條件

It is assumed that are competent in Python programming and have prior experience with building deep learning NLP models with TensorFlow or Keras

您要培養的技能

  • natural-language-processing
  • Tensorflow
  • machine-learning
  • deep-learning
  • BERT

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction to the Project

  2. Setup your TensorFlow and Colab Runtime

  3. Download and Import the Quora Insincere Questions Dataset

  4. Create tf.data.Datasets for Training and Evaluation

  5. Download a Pre-trained BERT Model from TensorFlow Hub

  6. Tokenize and Preprocess Text for BERT

  7. Wrap a Python Function into a TensorFlow op for Eager Execution

  8. Create a TensorFlow Input Pipeline with tf.data

  9. Add a Classification Head to the BERT hub.KerasLayer

  10. Fine-Tune and Evaluate BERT for Text Classification

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自FINE TUNE BERT FOR TEXT CLASSIFICATION WITH TENSORFLOW的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心