Deep Learning with PyTorch : Image Segmentation

提供方
Coursera Project Network
在此指導項目中,您將:

Use U-Net architecture for segmentation

Create train function and evaluator for training loop

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 2-hour project-based course, you will be able to : - Understand the Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation augmentation to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. - Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. - Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model.

您要培養的技能

  • Mathematical Optimization
  • Convolutional Neural Network
  • Autoencoder
  • Python Programming
  • pytorch

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Set up colab runtime environment

  2. Setup Configurations

  3. Augmentations

  4. Custom Dataset

  5. Load Dataset into batches

  6. Create Segmentation Model

  7. Create Train and Eval Function

  8. Train Model

  9. Inference

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心