Image Data Augmentation with Keras

4.6
441 個評分
提供方
Coursera Project Network
9,101 人已註冊
在此指導項目中,您將:

Image Data Augmentation with Keras

Using Image Data Generator with a Keras Model

Clock1.5 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1.5-hour long project-based course, you will learn how to apply image data augmentation in Keras. We are going to focus on using the ImageDataGenerator class from Keras’ image preprocessing package, and will take a look at a variety of options available in this class for data augmentation and data normalization. Since this is a practical, project-based course, you will need to prior experience with Python programming, convolutional neural networks, and Keras with a TensorFlow backend. Data augmentation is a technique used to create more examples, artificially, from an existing dataset. This is useful if your dataset is small and you want to increase the number of examples. Data augmentation can often solve over-fitting so that your model generalizes well after training. For images, a variety of augmentation can be applied to increase the number of examples. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Deep Learning
  • Convolutional Neural Network
  • Machine Learning
  • image augmentation
  • keras

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction and Importing Libraries

  2. Rotation

  3. Width and Height Shifts

  4. Brightness

  5. Shear Transformation

  6. Zoom

  7. Channel Shift

  8. Horizontal and Vertical Flips

  9. Data Normalization

  10. Rescale and Preprocessing Function

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

授課教師

審閱

來自IMAGE DATA AUGMENTATION WITH KERAS的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心