Classification Trees in Python, From Start To Finish

4.6
207 個評分
提供方
Coursera Project Network
8,583 人已註冊
在此指導項目中,您將:

Create Classification Trees in Python

Apply Cost Complexity Pruning in Python

Apply Cross Validation in Python

Create Confusion Matrices in Python

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 1-hour long project-based course, you will learn how to build Classification Trees in Python, using a real world dataset that has missing data and categorical data that must be transformed with One-Hot Encoding. We then use Cost Complexity Pruning and Cross Validation to build a tree that is not overfit to the Training Dataset. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Prerequisites: In order to be successful in this project, you should be familiar with Python and the theory behind Decision Trees, Cost Complexity Pruning, Cross Validation and Confusion Matrices. Notes: - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

Confusion MatrixClassification TreesCost Complexity PruningCross Validation

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Task 1: Import the modules that will do all the work

  2. Task 2: Import the data

  3. Task 3: Missing Data Part 1: Identifying Missing Data

  4. Task 4: Missing Data Part 2: Dealing With Missing Data

  5. Task 5: Format Data Part 1: Split the Data into Dependent and Independent Variables

  6. Task 6: Format the Data Part 2: One-Hot Encoding

  7. Task 7: Build A Preliminary Classification Tree

  8. Task 8: Cost Complexity Pruning Part 1: Visualize alpha

  9. Task 9: Cost Complexity Pruning Part 2: Cross Validation For Finding the Best Alpha

  10. Task 10: Building, Evaluating, Drawing, and Interpreting the Final Classification Tree

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

審閱

來自CLASSIFICATION TREES IN PYTHON, FROM START TO FINISH的熱門評論

查看所有評論

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心