Breast Cancer Prediction Using Machine Learning

提供方
Coursera Project Network
在此指導項目中,您將:

Learn to Build Logistic Regression Classifier to Classify Cancer as Malignant or Benign

Learn to download dataset directly from Kaggle using Kaggle API

Learn to work with Google Colab in Cloud

Clock2 hours
Intermediate中級
Cloud無需下載
Video分屏視頻
Comment Dots英語(English)
Laptop僅限桌面

In this 2 hours long project-based course, you will learn to build a Logistic regression model using Scikit-learn to classify breast cancer as either Malignant or Benign. We will use the Breast Cancer Wisconsin (Diagnostic) Data Set from Kaggle. Our goal is to use a simple logistic regression classifier for cancer classification. We will be carrying out the entire project on the Google Colab environment. You will need a free Gmail account to complete this project. Please be aware of the fact that the dataset and the model in this project, can not be used in real-life. We are only using this data for educational purposes. By the end of this project, you will be able to build the logistic regression classifier to classify between cancerous and noncancerous patients. You will also be able to set up and work with the Google colab environment. Additionally, you will also be able to clean and prepare data for analysis. You should be familiar with the Python Programming language and you should have a theoretical understanding of the Logistic Regression algorithm. You will need a free Gmail account to complete this project. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

您要培養的技能

  • Python Programming
  • Cancer prediction
  • Machine Learning
  • Data Mining

分步進行學習

在與您的工作區一起在分屏中播放的視頻中,您的授課教師將指導您完成每個步驟:

  1. Introduction and Import Libraries

  2. Download dataset directly from Kaggle

  3. Load & Explore the Dataset

  4. Perform LabelEncoding

  5. Split the data into Independent and Dependent sets and perform Feature Scaling

  6. Building Logistic Regression Classifier

  7. Evaluate the performance of the model

指導項目工作原理

您的工作空間就是瀏覽器中的雲桌面,無需下載

在分屏視頻中,您的授課教師會為您提供分步指導

常見問題

常見問題

還有其他問題嗎?請訪問 學生幫助中心