Course video 27 of 60

In this module we will discuss the "Electrifying brain – passive electrical signals". We will show that neurons are electrical device and learn what enables neurons to become “electrifying”. Here we will describe only the passive (vs. active) electrical properties of neurons. We will show that, at the quiescent state, the difference in electric potential across the cell’s membrane is always negative inside the cell (“the “resting potential”); we next show that the membrane behaves like an electrical (resistance-capacitance) RC circuit and highlight the notion of “membrane time constant” and, consequently, the ability of neurons to summate (in time) successive (synaptic) inputs (“electrical memory”) – a fundamental mechanism utilized by the brain. We will also show that when the synapse is activated, it generates an analog electrical signal (“the post-synaptic potential”, PSP) in the receiving (“post-synaptic”) cell. Most interestingly, there are two types of synapses in the brain – “excitatory” and “inhibitory” – we will discuss how these two opposing signals interact in the receiving ``neuron. This module is more technical than the more descriptive first two lessons; we encourage those of you who are not familiar with basic electricity (resistance, capacitance, Ohms law and Kirchoff’s law) to read about these in the sources links for this week’s lecture.

關於 Coursera


Join a community of 40 million learners from around the world
Earn a skill-based course certificate to apply your knowledge
Gain confidence in your skills and further your career