“Machine Design Part I” is the first course in an in-depth three course series of “Machine Design.” The “Machine Design” Coursera series covers fundamental mechanical design topics, such as static and fatigue failure theories, the analysis of shafts, fasteners, and gears, and the design of mechanical systems such as gearboxes. Throughout this series of courses we will examine a number of exciting design case studies, including the material selection of a total hip implant, the design and testing of the wing on the 777 aircraft, and the impact of dynamic loads on the design of an bolted pressure vessel.
In this first course, you will learn robust analysis techniques to predict and validate design performance and life. We will start by reviewing critical material properties in design, such as stress, strength, and the coefficient of thermal expansion. We then transition into static failure theories such as von Mises theory, which can be utilized to prevent failure in static loading applications such as the beams in bridges. Finally, we will learn fatigue failure criteria for designs with dynamic loads, such as the input shaft in the transmission of a car.

從本節課中

Material Properties in Design

In this week, we will first provide an overview on the course's content, targeted audiences, the instructor's professional background, and tips to succeed in this course. Then we will cover critical material properties in design, such as strength, modulus of elasticity, and the coefficient of thermal expansion. A case study examining material selection in a Zimmer orthopedic hip implant will demonstrate the real life design applications of these material properties. At the end of the week you will have the opportunity to check your own knowledge of these fundamental material properties by taking Quiz 1 "Material Properties in Design."