so again you wind up, you wind up if you have

the same data and you assume that the row margins are the

margins that include the randomized treatment or you assume the column

margins are margins that had the randomized treatment you wind up with

the same procedure provided you have the same data set.

So that, that's interesting.

perhaps comforting, perhaps discomforting, either way now before remember we

only had two numbers, we had two success probabilities, X

and Y or in this case it's a tumor; so

I'd hardly call that successful, but let's say two success probabilities.

Using the convention of calling a binomial event a success

regardless of how successful it is.

we have the two success probabilities at the onset, when we know

the value of the sum, then we only have one left, so

in that whole margin when we, when we assumed we only had

two free two free cells, given that the, the row margins were fixed.

Now we only have one free cell given that the row margins

were fixed and now that the sum is fixed.

And so, this is exactly what Fisher's ex, est, exact

test really tells you is that, the, you know, it, it,

as you vary that upper left hand cell or any

cell holding both margins fixed you get the remaining three elements.

You can obviously, you know, put in a value for the upper left-hand cell.

And you can obviously go through the exercise of finding

the other three cells, very easily, given the margins.