Chevron Left
返回到 Введение в машинное обучение

學生對 国立高等经济大学 提供的 Введение в машинное обучение 的評價和反饋

4.6
2,207 個評分
436 條評論

課程概述

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

熱門審閱

AA

Jun 15, 2016

Хороший курс без лишнего. Некоторые методы, предлагаемые в заданиях не оптимальны с точки зрения затрат ресурсов компьютера и времени программиста, но, надеюсь, с новыми сессиями будет развитие курса.

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

篩選依據:

126 - Введение в машинное обучение 的 150 個評論(共 421 個)

創建者 Konstantin

Mar 12, 2016

"Лучше игрушечная задача на реальных данных, чем реальная задача на игрушечных" - очень правильно подмечено.

Курс крайне понравился.

創建者 Пчелинцев А В

Mar 25, 2020

Курс сбалансирован по обзору теоретического материала и получаемым практическим навыкам. Т.е. как введение курс вполне оправдан.

創建者 Виталий Х

Mar 11, 2016

Спасибо.Курс достаточно хорош для первого знакомства с машинным обучением.Очень понравился курс и разнообразие прикладных задач.

創建者 Aleksandr S

Apr 07, 2020

Мне понравилось. Как начинающему были даны хорошие базовые знания, к тому же оставили много вопросов для дальнейшего изучения.

創建者 Бердников В А

Jul 03, 2018

Хороший курс, но требует нормального знания Python и намного больше времени чем указано в описании (если Python не знаешь).

創建者 Волков С А

Oct 03, 2018

Хорошо подходит для быстрого получения основ и для закрепления полученных знаний раньше.

Очень хорошие практические задания

創建者 Fedor R

Feb 25, 2016

Short and good, a way to learn practical python ML skills and math background to understand and feel different ML technics

創建者 Skapenko I R

Aug 19, 2018

Отличное введение в data science.

Имеется обзор всех основных алгоритмов. Также очень доволен знакомству с sklearn/pandas.

創建者 Il'gam A

Aug 31, 2016

It is a great course for those who intersted in machine learning! I recomend it for everyone. Thank you for your efforts!

創建者 Рудаменко Р А

Oct 23, 2019

Познавательно, легко и ёмко, даже для тех, кто сталкивается с машинным обучением и программированием на Python впервые!

創建者 Aver N

Feb 24, 2019

Курс очень понравился. Местами теория сложновата. Но в общем и целом - все замечательно. И задания и лекции. Спасибо!

創建者 Aidos A

Mar 11, 2016

Отличный курс!

Считаю, что в лекции про решающие деревья необходимо более детально разобрать аолгоритмы с пропусками.

創建者 Золотых М А

Sep 19, 2019

Отличный преподаватель. Все очень понятно, полезно и доходчиво. Юмор и примеры в лекции расставляют все по местам.

創建者 Dmitrii M

Mar 15, 2016

Отличный обзор возможностей машинног обучения с небольшой практикой дающей хороший задел для дальнейшего обучения

創建者 Aleksei S

Feb 07, 2016

Хороший курс, но требует мат. подготовки. Приятно видеть, что преподаватели работают над его усовершенствованием.

創建者 Anastasiya D

Mar 10, 2016

Курс очень понравился, хороший баланс математической строгости, доступного объяснения и практических примеров.

創建者 Isakov A S

Dec 05, 2019

Интересно. Достаточно сжато и не муторно. Очень интересно смотреть дополнительные материалы. Спасибо за курс!

創建者 Дубровин Л О

Aug 26, 2017

Сижу, часами читаю про математические обоснование алгоритма, который объясняют в видео за 5 минут, круть :)

創建者 Artem S

May 07, 2018

Курс подробный и очень интересный! Потраченное на курс время окупается с лихвой, поэтому очень рекомендую!

創建者 Саяпин В Ю

Dec 20, 2017

Отличный курс для изучения базовых основ машинного обучения. Идеален для тех, кто начинает изучать с нуля.

創建者 Andrey N

May 07, 2017

Отличный курс с плотной теоретической и практической программой, ориентированной на конкретные применения.

創建者 Yury L

Feb 04, 2016

Good alternative for Andrew Ng course in Russian. Good level, but some difficulties with tasks submission.

創建者 Churmantaev D M

Feb 04, 2019

Очень интересный курс. Мат.часть, конечно, тяжело воспринимается. Но практические задания - просто огонь!

創建者 Michael V M

Feb 20, 2016

Идеальный баланс между количеством/сложностью теории и практики. И все это в довольно разумные сроки.

創建者 Anton

Jun 14, 2016

Здорово cкомпонованы знания по интеллектуальному анализу данных с хорошими практическими заданиями