Chevron Left
返回到 Поиск структуры в данных

學生對 莫斯科物理科学与技术学院 提供的 Поиск структуры в данных 的評價和反饋

4.7
1,442 個評分
163 條評論

課程概述

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

熱門審閱

PK
2018年5月3日

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AA
2017年1月8日

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

篩選依據:

101 - Поиск структуры в данных 的 125 個評論(共 157 個)

創建者 Григорий С

2016年6月9日

5+

創建者 Николай М

2019年7月2日

.

創建者 Sergey

2019年3月19日

Good course. Outstanding choice of topics. The most prominent techniques for clustering are covered in an easy-to-read way. I especially enjoyed the last week's theory on processing texts. It's awesome that the authors have included the references for further reading; I've downloaded those, and now I'm looking forward to read it soon.

As usual for this set of courses, I have mixed feelings with regard to the programming assignments. From those, I mostly mastered installing various versions of Python packages. On the other hand, it can be viewed as a nice hands-on training in using the built-in functions for clustering purposes, and running some general Python routines, such as list comprehension etc. This way, it totally fits my personal goals, and I'm moving on to the next course.

創建者 Пономарев М А

2019年8月15日

Курс хороший, но многие материалы несколько устарели, приходится ковыряться в обсуждениях для решения проблем которые не должны возникать при решении заданий. Устаревшие библиотеки, ответы вычисленные с использованием более свежих версий не принимаются, проблемы с установкой старых версий и тд. Да и питон 2й версии прекратит поддержку к концу года. То, что кто то из составителей привык использовать в работе 2ю версию не означает что студентам следует изучать материал на ее примере, в скором времени им, с большей вероятностью, пригодится именно 3я.Стоило бы обновить задания под актуальные версии, сами лекции актуальность не теряют.

創建者 Окольнов Ю В

2018年6月23日

Интересный курс по теме, которая (я надеюсь) будет полезна в практической работе.Преподаватели хорошие, но иногда было видно, что либо они недостаточно потренировались на камеру, либо стеснялись. Т.е. словесная подача была недостаточно гладкой. Это мешает сфокусироваться и внимать.Последнее задание оказалось необязательным, и я уже не узнаю - проверит ли его кто-нибудь хоть когда-нибудь :)Предпоследнее задание было не особо сложным - но пришлось переустанавливать GenSim несколько раз, чтобы подбить ответы к грейдеру. Это ужасно. Нужно внести все вариации ответов, получаемых с разным gensim в грейдер!

創建者 Тенишев Т В

2021年1月29日

Этот курс местами сложнее предыдущего. Стоит повторить операции с матрицами, особенно про преобразования ими пространств и понятие собственных векторов. В последней неделе в качестве лектора выступает Константин Воронцов, очень хороший лектор. Но сама неделя тематического моделирования очень сложная, а задания, видно, устаревшие. В итоге местами складывается ощущение недоученности: вроде сделал задание и грейдер все принимает, но что по сути сделал - понятно не всегда

創建者 Sergei B

2016年8月4日

Этому курсу поставлю "четверочку". Предыдущие два более интересные и продуманные. Третий курс получился каким-то слишком поверхностным. Сам материал очень нужный и полезный, но уж слишком "по верхам". Хочется, чтобы некоторые темы разбирали более глубоко и последовательно - от простого к сложному. Не всегда можно обойтись коротеньким видео - лучше записать больше уроков, и толку будет больше.

Но все равно я доволен. Пройдя три курса, я уже могу решать реальные задачи.

創建者 Ирина К

2019年12月28日

Мне понравился этот курс (как и все предыдущие), но показалось очень неудобным, что на 4-й неделе в задании с использованием gensim ответы принимаются только с использованием устаревшей версии 2.3.0 для Python 2 (при этом в описании задания указано, что примутся с версией 3.5.0, но это не так): пришлось делать много танцев с бубнами вокруг переустановок разных версий, и это заняло неоправданно много времени. В целом курс очень хороший. Большое спасибо авторам.

創建者 Голубев К О

2017年8月26日

В некоторых заданиях не хватает конкретики. В частности, задача по BigARTM из-за обновленной до 0.8.3 версии библиотеки работает несколько по-другому. Также хотелось бы больше задач по программированию по теме кластеризации. В конспектах пяти-восьми лекций, отображаемых на видео можно заметить ошибки/опечатки, вводящие в заблуждение. Хотелось бы, чтобы конспект был чище.

Тем не менее, курс отличный, дает очень много полезной информации. Ставлю твердую 4.

創建者 Саркисов А Р

2019年12月6日

Необычайно непродуман последний блок про тематическое моделирование. Катавасия с версиями пакетов для сдачи задания - отдельный минус. Уже второй курс подряд все блоки, кроме последнего на 5/5, а последний портит всю картину. Материал подается в не самой удобной форме ( особенно, что касается нейронных сетей и баесовских методов из прошлого курса).

創建者 Michael N

2017年6月25日

Очень полезный курс. Хотя по сравнению с 1, 2 и 4 показался местами пустоватым.

Практические тесты мало помогают усвоить материал, т.к. зачастую их можно решить просто бездумно дургая соответствующие API

Однако теоретическая часть выше всяких похвал.

創建者 Anatoly V

2020年7月5日

Хотелось бы, чтобы авторы курса адаптировали некоторые его задания к третьей версии питона. К сожалению, сейчас очень много времени уходит на то, чтобы просто установить именно ту версию, которая была у автора, чтобы получить тот же ответ.

創建者 Alexander A

2017年3月25日

Установка BigARTM меняется. Видео сделано по предыдущей версии. Вместо видео лучше бы была PDF с подробными инструкциями. В ролике приведён пример идеальной ситуации. Хотелось бы, чтобы в ролике разбирались типичные ошибки установки.

創建者 Макеева Д В

2018年6月15日

было бы здорово, если бы создатели курса перезаливали информацию по мере изменений состава пакетов. так, например, BigARTM уже совершенно не соответствует тому, что говорится в курсе: ни установка, ни пример работы с данным пакетом.

創建者 Михаил И

2020年12月5日

Тематическое моделирование: из-за того что курс не обновляется уже три года, для сдачи заданий приходилось ставить окольными путями старые версии питона (2.7 не поддерживается с января 2020, 3.5 - с сентября 2020) и библиотек

創建者 Konstantin C

2018年4月2日

Тематическое моделирование довольно сложно для понимания и требует много дополнительного времени на изучение. Возможно, стоит пересмотреть этот раздел: упростить изложение либо растянуть на две и более недели обучения.

創建者 Сотников Г Д

2017年6月11日

Курс, на мой взгляд, уступает предыдущим двум. В целом мне понравилось, однако некоторые шероховатости в его составлении испортили впечатление. Советую пройти и ознакомиться! Подталкивает к интересным размышлениям.

創建者 Last D

2019年6月10日

всё чаще появляются задания, где ответ зависит от версии библиотек

(хотелось бы чтоб грейдер принимал аналогичные ответы по заданиям из актуальных версий библиотек, а не 1-3 летней давности)

創建者 Лавренов Д В

2018年12月9日

Доволен первыми тремя неделями и категорически недоволен последней, 4й. Как минимум из-за отвратительного задания по программированию.

Тем не менее, большое спасибо за курс!

創建者 Anvar A

2018年3月25日

первые недели курса были очень полезными. Последния неделя слишком сложная, чтобы ее дать в столь короткий срок. Никакой пользы не извлек из последней недели

創建者 Evghenii G

2017年11月28日

Очень доступное объяснение материала, кроме последней недели - её, как будто, взяли из другого курса. Было бы хорошо добавить побольше практических задач

創建者 Vsevolod K

2019年5月23日

Отличный и интересный курс. Только устарело задание на BigArtm. Не актуально видео, установить библиотеку самому не тривиально.

創建者 Minasian V

2017年7月21日

В целом- очень круто. Некоторые темы сложные , но интересные. На мой взгляд, последняя неделя проработана не очень хорошо.

創建者 Tachanka R

2016年6月19日

Отличный курс, но мало времени уделено кластеризации, хорошо бы иметь 2 недели вместо одной и больше заданий

創建者 Олеся Р

2020年2月25日

Курс интересный, но огорчает то, что на результат выполненных заданий влияет версия модулей и языка Python.