Chevron Left
返回到 Обучение на размеченных данных

學生對 莫斯科物理科学与技术学院 提供的 Обучение на размеченных данных 的評價和反饋

4.8
2,078 個評分
270 個審閱

課程概述

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

熱門審閱

RN

Jan 21, 2017

Один из лучших курсов по обучению на размеченных данных. Немного расстраивали несбалансированность сложности домашних заданий и промежуточных проверок правильности подготовки данных в заданиях.

AG

Nov 15, 2019

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

篩選依據:

201 - Обучение на размеченных данных 的 225 個評論(共 252 個)

創建者 Романов Н

May 21, 2019

Отличный курс для понимания основных методов работы с размеченными данными.

Хотелось бы побольше про нейронные сети.

創建者 Мельникова Е А

May 22, 2019

Отличный курс!

Не понравился только раздел про нейронные сети: рассмотрено очень поверхностно и абстрактно. Реального понимания задачи вообще не дало.

創建者 Колобов И А

Sep 13, 2019

Курс отличный! Правда, пятая неделя оказалась достаточно непонятной в плане консистентности материала относительно других недель, особенно распределения в рамках наивного байеса. В целом, отмечу плюсом для себя именно наличие похожих заданий в разных неделях - построение линейных моделей, к примеру - уже доводится до определенного автоматизма и точно не забудется. Также порадовали вставки разных особенных функций в синтаксисе питона (например, zip или concat) - то есть не просто повторение и копипаста, а освоение и особенностей языка. В целом, конечно, теоретические моменты со временем, если не работать непосредственно с ними часто, могут забыться, но хотя бы стало меньше каши в голове относительно тех или иных методов. Спасибо!

創建者 Антон М И

Sep 13, 2019

Весьма полный и подробный курс, задания можно в принципе выполнять и на python 3, но лучше чтобы все таки создатели курса полностью адаптировали под последний питон

創建者 Аверин А В

Oct 24, 2019

Добрый день! Курс очень понравился!

創建者 Ахметов А И

Sep 22, 2019

Отличный, сложный и интересный курс!

創建者 Шаталов Я М

Oct 04, 2019

Отличный курс, НО много проблем с устаревшими библиотеками. Установка pybrain оказалась настоящим приключением, которое я запомню надолго!

創建者 Diana

Oct 14, 2019

хороший теоретический блок, практические задания продуманные и по теме - но местами слишком поверхностные

創建者 Mamedov M

Nov 11, 2019

One of the best series of courses i ve ever started

創建者 Artem G

Nov 15, 2019

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

創建者 Domnin V

Jan 27, 2019

Любопытный вводный курс, дающий мне как новичку представление о сложившейся терминологии, базовых инструментах, а главное широте и объеме темы. Тема огромна.

Спасибо инструкторам за энтузиазм и информативность изложения. Получилось точно не хуже, чем AWS тренинг.

創建者 Dmitry D

Nov 09, 2018

Курс отличный! В меру теории и практики. Только 5я неделя подкачала - очень скомканно.

創建者 Sergey

Mar 14, 2019

Overall, it's a good course.

I enjoyed the choice of topics to be covered, the structure of the course, and especially the theoretical part. A minor comment: I think, theory transcripts, tests, and programming assignments would only benefit from bringing some extra clarity. Specifically, before any equations it would be reasonable to annotate and/or briefly explain the variables; in multiple choice tests, it won't hurt to formulate the questions in a way that reduces ambiguity; in programming assignments, it would help a lot to specify what you mean exactly when you say 'dataset' (perhaps, in fine print).

A major concern is that the course developers do not keep up with Python development. It doesn't bother me at all to create a virtual environment with Python 2, and to install an obsolete version of sklearn; however, you at least have to specify the correct compatibilities. Specifically, the assignments would state that the scripts run on sklearn 0.15 and newer, but that's not true. The import specifications and function names have changed drastically shortly after v0.15. Although some (unconvincing) reasoning for using python 2 is out there, I don't see how anyone could benefit from leaning the deprecated sklearn namespace. It's especially striking given that you charge for the course.

Overall, the benefits of the theoretical part outweigh the minor points mentioned above.

I look forward to starting the following courses of the specialization.

創建者 Шаланкин М Д

Mar 14, 2019

Хороший сложный курс, насыщенная программа и интересные задания.UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

創建者 Petr R

Mar 16, 2019

Такой хороший курс и так слили последнюю неделю. Сделайте уже что-нибудь с ней. Все в лучших традициях Воронцова : миллион формул на слайде, куча интегралов, выводы какие-то в две строки и "очевидные преобразования", далее задание на 5 минут, которое слабо связано с тем что происходило в лекции. Очень долго не мог закончить этот курс именно из-за этой недели, постоянно прокрастинировал её.

В итоге оценка за 1-4 неделю% 5 из 5

За 5 неделю : 1 из 5

創建者 Амиров Р М

Apr 24, 2017

Отличный курс! Жаль, что мало практики по нейронкам.

創建者 Nikolay S

Mar 24, 2018

Некоторые задания были плохо составлены. Было слишком много ошибок/багов/опечаток. В остальном было полезно.

創建者 Ульянов Р

Jul 09, 2017

Лучше первого

創建者 Stanislav

Feb 22, 2018

Замечательный курс, узнал много важных вещей. Но последняя неделя показалась несколько поверхностной. Надеюсь, что её материал будет рассмотрен подробнее в следующих курсах специализации.

創建者 Vadim K

May 29, 2018

Supervised learning part is much better than the first one in terms of the lessons, however it's not perfect. Neural networks lessons and assignments are really poor. I also find some things to not be expressed in enough details, it seems like not all pictures in the slides are correct. As I remember it was about uniform vs distance in KNN or SVM where overfitting graph is for distance(1) instead of uniform(1/d).

創建者 Arsenii M

Jul 22, 2017

В конеце курса немного скомканно подаётся материал, особенно на пятой неделе. В остальном всё отлично!

創建者 Вернер А И

Jul 26, 2017

В целом курс очень полехный. Теоретический материал изложен очень хорошо, с большим количеством примеров, облегчающих понимание. Наличие конспектов экономит время, что тоже немаловажно. Единственное замечание по курсу - сложность заданий по программированию. На мой взгляд они зачастую являлись очень сложными, а поскольку решений этих заданий не имелось, приходилось часами, а порой и по нескольку дней, работать над каждым из них, что сильно замедляло процесс обучения и снижало мотивацию прохождения курса. Предлагаю авторам курса принять к сведению последнее замечание, и выложить в свободном доступе решения заданий, для тех обучающихся, которые затрудняются самостоятельно выполнить эту обязательную часть курса.

創建者 Студенников В Ю

Oct 25, 2016

Не все используемые понятия объясняются. Очень мало внимания уделено нейронным сетям.

創建者 Радионов А

Sep 20, 2017

Курс отличный: грамотно подаются практические аспекты обучения с учителем. Правда, впечатление несколько портит использование Python 2 и странное задание с PyBrain. Но это не критично.

創建者 Vadim T

Mar 25, 2017

Велика разница между преподавателями. Особенно неудачно, на мой взгляд, освещались темы Байесовской классификации и регресии и метрические алгоритмы