課程信息

62,422 次近期查看

高級

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

您將學到的內容有

• Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares

• Develop a model for typical vehicle localization sensors, including GPS and IMUs

• Apply extended and unscented Kalman Filters to a vehicle state estimation problem

• Apply LIDAR scan matching and the Iterative Closest Point algorithm

高級

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

1

Module 0: Welcome to Course 2: State Estimation and Localization for Self-Driving Cars

9 個視頻 （總計 33 分鐘）, 3 個閱讀材料
9 個視頻
Welcome to the Course3分鐘
Meet the Instructor, Jonathan Kelly2分鐘
Meet the Instructor, Steven Waslander5分鐘
Meet Diana, Firmware Engineer2分鐘
Meet Winston, Software Engineer3分鐘
Meet Andy, Autonomous Systems Architect2分鐘
Meet Paul Newman, Founder, Oxbotica & Professor at University of Oxford5分鐘
The Importance of State Estimation1分鐘
3 個閱讀材料
Course Prerequisites: Knowledge, Hardware & Software15分鐘
How to Use Discussion Forums15分鐘
How to Use Supplementary Readings in This Course15分鐘

Module 1: Least Squares

4 個視頻 （總計 33 分鐘）, 3 個閱讀材料, 3 個測驗
4 個視頻
Lesson 1 (Part 2): Squared Error Criterion and the Method of Least Squares6分鐘
Lesson 2: Recursive Least Squares7分鐘
Lesson 3: Least Squares and the Method of Maximum Likelihood8分鐘
3 個閱讀材料
Lesson 1 Supplementary Reading: The Squared Error Criterion and the Method of Least Squares45分鐘
Lesson 2 Supplementary Reading: Recursive Least Squares30分鐘
Lesson 3 Supplementary Reading: Least Squares and the Method of Maximum Likelihood30分鐘
3 個練習
Lesson 1: Practice Quiz30分鐘
Lesson 2: Practice Quiz30分鐘
2

Module 2: State Estimation - Linear and Nonlinear Kalman Filters

6 個視頻 （總計 53 分鐘）, 5 個閱讀材料, 1 個測驗
6 個視頻
Lesson 2: Kalman Filter and The Bias BLUEs5分鐘
Lesson 3: Going Nonlinear - The Extended Kalman Filter9分鐘
Lesson 4: An Improved EKF - The Error State Extended Kalman Filter6分鐘
Lesson 5: Limitations of the EKF7分鐘
Lesson 6: An Alternative to the EKF - The Unscented Kalman Filter15分鐘
5 個閱讀材料
Lesson 1 Supplementary Reading: The Linear Kalman Filter45分鐘
Lesson 2 Supplementary Reading: The Kalman Filter - The Bias BLUEs10分鐘
Lesson 3 Supplementary Reading: Going Nonlinear - The Extended Kalman Filter45分鐘
Lesson 4 Supplementary Reading: An Improved EKF - The Error State Kalman FIlter1小時
Lesson 6 Supplementary Reading: An Alternative to the EKF - The Unscented Kalman Filter30分鐘
3

Module 3: GNSS/INS Sensing for Pose Estimation

4 個視頻 （總計 34 分鐘）, 3 個閱讀材料, 1 個測驗
4 個視頻
Lesson 2: The Inertial Measurement Unit (IMU)10分鐘
Lesson 3: The Global Navigation Satellite Systems (GNSS)8分鐘
Why Sensor Fusion?3分鐘
3 個閱讀材料
Lesson 1 Supplementary Reading: 3D Geometry and Reference Frames10分鐘
Lesson 2 Supplementary Reading: The Inertial Measurement Unit (IMU)30分鐘
1 個練習
4

Module 4: LIDAR Sensing

4 個視頻 （總計 48 分鐘）, 3 個閱讀材料, 1 個測驗
4 個視頻
Lesson 2: LIDAR Sensor Models and Point Clouds12分鐘
Lesson 3: Pose Estimation from LIDAR Data17分鐘
Optimizing State Estimation3分鐘
3 個閱讀材料
Lesson 1 Supplementary Reading: Light Detection and Ranging Sensors10分鐘
Lesson 2 Supplementary Reading: LIDAR Sensor Models and Point Clouds10分鐘
Lesson 3 Supplementary Reading: Pose Estimation from LIDAR Data30分鐘
1 個練習

關於 自动驾驶汽车 專項課程

Be at the forefront of the autonomous driving industry. With market researchers predicting a \$42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....

常見問題

• 注册以便获得证书后，您将有权访问所有视频、测验和编程作业（如果适用）。只有在您的班次开课之后，才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程，可能无法访问某些作业。

• 您注册课程后，将有权访问专项课程中的所有课程，并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中，您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容，可以免费旁听课程。