課程信息
13,309 次近期查看

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為18 小時

建議:5 weeks of study, 2-3 hours/week...

英語(English)

字幕:英語(English)

您將獲得的技能

FreertosReal-Time Operating System (RTOS)Scheduling AlgorithmsScheduling (Computing)

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為18 小時

建議:5 weeks of study, 2-3 hours/week...

英語(English)

字幕:英語(English)

教學大綱 - 您將從這門課程中學到什麼

1
完成時間為 3 小時

Introduction to Real-Time Systems

Here is where it all starts! We will make a brave attempt to start your future career in real-time systems! This week starts by learning the basic building stones in real-time systems and the system parameters required to successfully construct a real-time system. We introduce you to the corner stone of real-time systems, namely the scheduler – and its task in real-time schedules. You learn also what kind of real-time guarantees are needed in which systems. Concretely, you will learn (1) What is needed to create a real-time system (2) Where real-time requirements are needed. (3) The task and job structure and the parameters needed to schedule a task. (4) Difference between pre-emptive and non-pre-emptive tasks. This course is also part of a Blended Master Programme in Embedded Systems. ...
6 個視頻 (總計 42 分鐘), 1 個閱讀材料, 3 個測驗
6 個視頻
The Concepts of Real-Time Systems6分鐘
The Concept of Real-TimeTasks10分鐘
The Principles of Scheduling7分鐘
Real-Time Pre-emption10分鐘
FreeRTOS "Hello World" Tutorial4分鐘
1 個閱讀材料
FreeRTOS API10分鐘
1 個練習
Quiz 116分鐘
2
完成時間為 3 小時

Static Scheduling

In this week we start to actually do some scheduling. We firstly have a look at the simplest type of scheduler – the clock driven scheduler. After this we deepen our learning with the fixed priority scheduler and the monotonic schedulers. We learn how the priorities are determined using these schedulers and we learn when/when not to use these schedulers. Secondly we learn how to determine if a system is overloaded in order to validate schedules without complete system simulation.Concretely, after attending this week you will be able to: (1) Schedule a set of tasks with the clock driven scheduler, with the fixed priority scheduler, with the monotonic schedulers. (2) Determine if a system is overloaded using the total-utilization method and the Urm method. (3) Program FreeRTOS to schedule a set of tasks using the fixed priority scheduler ...
7 個視頻 (總計 44 分鐘), 2 個測驗
7 個視頻
Clock Driven Scheduling - Implementation4分鐘
Cyclic Structured Scheduling - The Concept6分鐘
Cyclic Structured Scheduling - Example5分鐘
Fixed Priority Scheduling7分鐘
Monotonic Scheduling - The Concept7分鐘
Monotonic Scheduling - Example6分鐘
1 個練習
Quiz 216分鐘
3
完成時間為 3 小時

Dynamic Scheduling

In the previous week we learned the limitations of the total-utilization method and the Urm method. We start this week off by extending these tests to tasks with short response times. The new method is also, as usual, used in practice! We then focus on improving the optimality of real-time schedules. This is done by learning the principles behind dynamic scheduling methods. Two new schedulers using the dynamic scheduling principle is learned and used in practice with a few examples; the LST scheduler and the EDF scheduler.Concretely, you will learn: (1) How to determine feasibility of a set of tasks using the time demand analysis method. (2) How to schedule a set of tasks using LST and EDF. (3) To determine when a dynamic scheduler is appropriate and when it is not appropriate....
5 個視頻 (總計 35 分鐘), 2 個測驗
5 個視頻
Tasks with Short Response Time - Example8分鐘
Dynamic Priority Scheduling7分鐘
Earliest Deadline First Theory5分鐘
Earliest Deadline First Example7分鐘
1 個練習
Quiz 316分鐘
4
完成時間為 3 小時

Non-Periodic Jobs

All things are easy and nice when not caring about non-periodic jobs. When including non-periodic jobs, the schedulers must take these into account to make a feasible schedule, which we learn this week. The problem is that a non-periodic job can arrive at any time, even if a periodic job is already scheduled. We learn both how to optimize a schedule for non-periodic jobs and how to validate a schedule when non-periodic jobs arrive to the schedule. Concretely, we will learn: (1) How to use the slack stealing method to optimize a schedule with non-periodic jobs (2) How to use the LRT scheduler to optimize a schedule with non-periodic jobs (3) How to use the deferrable server to optimize a schedule with non-periodic jobs (4) Formally verify a schedule with non-periodic jobs ...
6 個視頻 (總計 40 分鐘), 2 個測驗
6 個視頻
Aperiodic Jobs - Example4分鐘
Sporadic Jobs - The Concept7分鐘
Sporadic Jobs - Example7分鐘
The Deferrable Server Theory5分鐘
The Deferrable Server Example8分鐘
1 個練習
Quiz 412分鐘
5
完成時間為 4 小時

Real-Time Operating Systems

This week is what we all have been waiting for! We will deepen our learning of FreeRTOS, its kernel and the functionalities. We demonstrate the importance of predictable computer architectures for example when determining the context switch and factors influencing this overhead. As we head towards the future, we finish this course by introducing you to multi-core real-time systems and scheduling methods for multi-core real-time systems. Concretely, you will learn: (1) The internal mechanisms of FreeRTOS, for example mutexes/semaphores and message queues. (2) Multi-core computer architectures for real-time systems. (3) Multi-core scheduling methods....
5 個視頻 (總計 36 分鐘), 2 個測驗
5 個視頻
The FreeRTOS Kernel6分鐘
Multi-Core Real-Time Systems7分鐘
Multi-Core Scheduling - Shared Resources6分鐘
Multi-Core Scheduling - Scheduling Methods8分鐘
1 個練習
Quiz 512分鐘
4.5
70 個審閱Chevron Right

75%

完成這些課程後已開始新的職業生涯

33%

通過此課程獲得實實在在的工作福利

熱門審閱

創建者 LPJul 12th 2017

Real-Time systems are very demanded nowadays. Excellent course to review some aspects in this field or to learn everything from the beginning.

創建者 GTApr 23rd 2018

I feel having in depth analysis on various scheduling algorithms would be helpful. I have learnt many things from this course.

講師

Avatar

Simon Holmbacka

Dr
Åbo Akademi University, Faculty of Science and Engineering

關於 EIT 数字

EIT Digital is a pan-European organization whose mission is to foster digital technology innovation and entrepreneurial talent for economic growth and quality of life. By linking education, research and business, EIT Digital empowers digital top talents for the future. EIT Digital provides online and blended Innovation and Entrepreneurship education to raise quality, increase diversity and availability of the top-level content provided by 20 leading technical universities around Europe. The universities deliver a unique blend of the best of technical excellence and entrepreneurial skills and mindset to digital engineers and entrepreneurs at all stages of their careers. The academic partners support Coursera’s bold vision to enable anyone, anywhere, to transform their lives by accessing the world’s best learning experience. This means that EIT Digital gradually shares parts of its entrepreneurial and academic education programmes to demonstrate its excellence and make it accessible to a much wider audience. EIT Digital’s online education portfolio can be used as part of blended education settings, in both Master and Doctorate programmes, and for professionals as a way to update their knowledge. EIT Digital offers an online programme in 'Internet of Things through Embedded Systems'. Achieving all certificates of the online courses and the specialization provides an opportunity to enroll in the on campus program and get a double degree. Please visit https://www.eitdigital.eu/eit-digital-academy/ ...

關於 Development of Secure Embedded Systems 專項課程

Three people died after the crash landing of an Asiana Airlines aircraft from Seoul, Korea, at San Fransisco International Airport (SFO) on July 6, 2013. The American National Transportation Safety Board (NTSB) established that the crash most probably was caused by the flight crew's (in)actions. Three teenage girls lost their lives; two in the airplane and another was accidentally run over by a firetruck. The human factor is often cause for accidents. NTSB and others report that more than 50 percent of plane crashes is caused by pilot error (and for road accidents it is even 90 perc.) Correctly designed safety and security critical systems can prevent these errors. After following this course successfully, you are able to develop secure embedded systems that are at the core of these safety and security critical systems. You are even challenged to program your own landing guiding system in our capstone project. If you are interested in building secure embedded systems for the benefit of humanity, this specialization is for you! EIT Digital has chosen 3 MOOC topics of industrial interest, namely: 1) Embedded design and hardware, 2) Security in embedded connectivity and 3) Real-Time systems. These MOOCs show what it takes to program Internet-of-Things systems. We focus on tools used in the modern IoT industry, and we push for a practical learn-by-programming approach in which you are exposed to the actual development in an early stage. We hope to see you soon!...
Development of Secure Embedded Systems

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • We like to keep the exercise a bit more like in the industrial life: there is no "correct" answer but your task is to make the customer (peer reviewer) satisfied. Therefore we have other student review your solution and if that "customer" finds it acceptable, you will get a good score. Like in many engineering projects, there is no "correct solution" but there are many correct ways of implementing your solution.

還有其他問題嗎?請訪問 學生幫助中心