Chevron Left
返回到 生活中的数据科学

學生對 约翰霍普金斯大学 提供的 生活中的数据科学 的評價和反饋

4.4
2,288 個評分
277 條評論

課程概述

Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses. This is a focused course designed to rapidly get you up to speed on doing data science in real life. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to: 1, Describe the “perfect” data science experience 2. Identify strengths and weaknesses in experimental designs 3. Describe possible pitfalls when pulling / assembling data and learn solutions for managing data pulls. 4. Challenge statistical modeling assumptions and drive feedback to data analysts 5. Describe common pitfalls in communicating data analyses 6. Get a glimpse into a day in the life of a data analysis manager. The course will be taught at a conceptual level for active managers of data scientists and statisticians. Some key concepts being discussed include: 1. Experimental design, randomization, A/B testing 2. Causal inference, counterfactuals, 3. Strategies for managing data quality. 4. Bias and confounding 5. Contrasting machine learning versus classical statistical inference Course promo: https://www.youtube.com/watch?v=9BIYmw5wnBI Course cover image by Jonathan Gross. Creative Commons BY-ND https://flic.kr/p/q1vudb...
突出顯示
Statistics review
(44 條評論)

熱門審閱

SM
2017年8月19日

A very good and concise course that helps to understand the basics of the Data Science and its applications. The examples are very relevant and helps to understand the topic easily.

ES
2017年11月11日

Highly educational course on the realities of data analysis. Many good tips for your own analyses as well as for managing others responsible for coherent and accurate analyses.

篩選依據:

201 - 生活中的数据科学 的 225 個評論(共 279 個)

創建者 Gustavo V

2019年4月13日

Help me understand what can I expect from a real data science project.

創建者 Deepak G

2016年6月28日

Quality of this course is better than the rest of the specialization.

創建者 Sangeeta N

2021年2月21日

This gives the basics of Data Science that one needs to lead a team

創建者 Chris C

2017年11月22日

A little difficult overall but had some key points to take away.

創建者 Jomo C

2018年1月28日

Good course, Longer than expected. Very satisfying at the end

創建者 Rorie D

2016年4月20日

great approach, thanks. A few typos, but otherwise great.

創建者 Navneet W

2020年9月10日

On of the best courses of Data science on Coursera.

創建者 Brian N

2018年4月10日

Good for introduction in Data Science Process

創建者 Paul C

2016年11月4日

A solid course with lots of practical advice.

創建者 Paulose B

2016年10月31日

Short session need more handson excercise

創建者 JERRY O

2020年1月22日

Good course with vibrant instructors.

創建者 SANTOSH K R

2017年1月7日

More real world examples are required

創建者 Hubertus H

2017年1月27日

Good summary on experimental design.

創建者 Nachum S

2018年7月13日

Good, a bit long for the material.

創建者 Setia B

2017年12月6日

I really enjoyed the course :)

創建者 Jeffery T

2017年11月30日

Good course for managers

創建者 Angel S

2016年1月17日

Pretty useful course

創建者 Venuprasad R

2016年1月5日

Very practical views

創建者 Rui R

2017年6月18日

Too much theory ...

創建者 SARAVANAN.V

2020年6月20日

Nice course 👍

創建者 Deepa F P

2017年9月5日

Good content

創建者 SARMAD H

2020年8月5日

Nice course

創建者 R.K.Suriyakumar

2020年6月7日

its good

創建者 ECE- R G

2020年7月13日

Nothing

創建者 SATISH R

2017年6月7日

Great