課程信息

790,888 次近期查看

學生職業成果

34%

完成這些課程後已開始新的職業生涯

35%

通過此課程獲得實實在在的工作福利

12%

加薪或升職
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 3 門課程(共 5 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
中級
完成時間大約為34 小時
英語(English)
字幕:英語(English), 韓語

您將學到的內容有

  • Describe how machine learning is different than descriptive statistics

  • Create and evaluate data clusters

  • Explain different approaches for creating predictive models

  • Build features that meet analysis needs

您將獲得的技能

Python ProgrammingMachine Learning (ML) AlgorithmsMachine LearningScikit-Learn

學生職業成果

34%

完成這些課程後已開始新的職業生涯

35%

通過此課程獲得實實在在的工作福利

12%

加薪或升職
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 3 門課程(共 5 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
中級
完成時間大約為34 小時
英語(English)
字幕:英語(English), 韓語

提供方

密歇根大学 徽標

密歇根大学

教學大綱 - 您將從這門課程中學到什麼

內容評分Thumbs Up91%(11,274 個評分)Info
1

1

完成時間為 8 小時

Module 1: Fundamentals of Machine Learning - Intro to SciKit Learn

完成時間為 8 小時
6 個視頻 (總計 71 分鐘), 4 個閱讀材料, 2 個測驗
6 個視頻
Introduction11分鐘
Key Concepts in Machine Learning13分鐘
Python Tools for Machine Learning4分鐘
An Example Machine Learning Problem12分鐘
Examining the Data9分鐘
K-Nearest Neighbors Classification20分鐘
4 個閱讀材料
Course Syllabus10分鐘
Help us learn more about you!10分鐘
Notice for Auditing Learners: Assignment Submission10分鐘
Zachary Lipton: The Foundations of Algorithmic Bias (optional)30分鐘
1 個練習
Module 1 Quiz20分鐘
2

2

完成時間為 9 小時

Module 2: Supervised Machine Learning - Part 1

完成時間為 9 小時
12 個視頻 (總計 166 分鐘), 2 個閱讀材料, 2 個測驗
12 個視頻
Overfitting and Underfitting12分鐘
Supervised Learning: Datasets4分鐘
K-Nearest Neighbors: Classification and Regression13分鐘
Linear Regression: Least-Squares17分鐘
Linear Regression: Ridge, Lasso, and Polynomial Regression19分鐘
Logistic Regression12分鐘
Linear Classifiers: Support Vector Machines13分鐘
Multi-Class Classification6分鐘
Kernelized Support Vector Machines18分鐘
Cross-Validation9分鐘
Decision Trees19分鐘
2 個閱讀材料
A Few Useful Things to Know about Machine Learning10分鐘
Ed Yong: Genetic Test for Autism Refuted (optional)10分鐘
1 個練習
Module 2 Quiz22分鐘
3

3

完成時間為 7 小時

Module 3: Evaluation

完成時間為 7 小時
7 個視頻 (總計 81 分鐘), 1 個閱讀材料, 2 個測驗
7 個視頻
Confusion Matrices & Basic Evaluation Metrics12分鐘
Classifier Decision Functions7分鐘
Precision-recall and ROC curves6分鐘
Multi-Class Evaluation13分鐘
Regression Evaluation6分鐘
Model Selection: Optimizing Classifiers for Different Evaluation Metrics13分鐘
1 個閱讀材料
Practical Guide to Controlled Experiments on the Web (optional)10分鐘
1 個練習
Module 3 Quiz28分鐘
4

4

完成時間為 10 小時

Module 4: Supervised Machine Learning - Part 2

完成時間為 10 小時
10 個視頻 (總計 94 分鐘), 11 個閱讀材料, 2 個測驗
10 個視頻
Random Forests11分鐘
Gradient Boosted Decision Trees5分鐘
Neural Networks19分鐘
Deep Learning (Optional)7分鐘
Data Leakage11分鐘
Introduction4分鐘
Dimensionality Reduction and Manifold Learning9分鐘
Clustering14分鐘
Conclusion2分鐘
11 個閱讀材料
Neural Networks Made Easy (optional)10分鐘
Play with Neural Networks: TensorFlow Playground (optional)10分鐘
Deep Learning in a Nutshell: Core Concepts (optional)10分鐘
Assisting Pathologists in Detecting Cancer with Deep Learning (optional)10分鐘
The Treachery of Leakage (optional)10分鐘
Leakage in Data Mining: Formulation, Detection, and Avoidance (optional)10分鐘
Data Leakage Example: The ICML 2013 Whale Challenge (optional)10分鐘
Rules of Machine Learning: Best Practices for ML Engineering (optional)10分鐘
How to Use t-SNE Effectively10分鐘
How Machines Make Sense of Big Data: an Introduction to Clustering Algorithms10分鐘
Post-course Survey10分鐘
1 個練習
Module 4 Quiz20分鐘

審閱

來自APPLIED MACHINE LEARNING IN PYTHON的熱門評論

查看所有評論

關於 借助 Python 应用数据科学 專項課程

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate....
借助 Python 应用数据科学

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

還有其他問題嗎?請訪問 學生幫助中心