Chevron Left
返回到 Applied Machine Learning in Python

學生對 密歇根大学 提供的 Applied Machine Learning in Python 的評價和反饋

4.6
8,013 個評分
1,460 條評論

課程概述

This course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit through a tutorial. The issue of dimensionality of data will be discussed, and the task of clustering data, as well as evaluating those clusters, will be tackled. Supervised approaches for creating predictive models will be described, and learners will be able to apply the scikit learn predictive modelling methods while understanding process issues related to data generalizability (e.g. cross validation, overfitting). The course will end with a look at more advanced techniques, such as building ensembles, and practical limitations of predictive models. By the end of this course, students will be able to identify the difference between a supervised (classification) and unsupervised (clustering) technique, identify which technique they need to apply for a particular dataset and need, engineer features to meet that need, and write python code to carry out an analysis. This course should be taken after Introduction to Data Science in Python and Applied Plotting, Charting & Data Representation in Python and before Applied Text Mining in Python and Applied Social Analysis in Python....

熱門審閱

AS

2020年11月26日

great experience and learning lots of technique to apply on real world data, and get important and insightful information from raw data. motivated to proceed further in this domain and course as well.

OA

2017年9月8日

This course is ideally designed for understanding, which tools you can use to do machine learning tasks in python. However, for deep understanding ML algorithms you should take more math based courses

篩選依據:

801 - Applied Machine Learning in Python 的 825 個評論(共 1,451 個)

創建者 Jun S

2020年12月30日

Excellence course for beginners

創建者 Adish P

2020年5月28日

Excellent Course. Very helpful.

創建者 Vikas K

2019年12月9日

best course in detailed version

創建者 ASHISH G

2019年7月17日

excellent course for beginners!

創建者 Fadhel A

2019年5月28日

whole new informations for me.

創建者 Li T

2017年10月28日

Informative course. Five stars!

創建者 Ivan P

2017年8月14日

Very good course for beginners)

創建者 Madalina-Mihaela B

2017年7月18日

Awesome course. Very practical!

創建者 Jim S

2017年7月1日

Excellent content and delivery.

創建者 Keziah S T K S

2021年12月6日

Good explanations, good module

創建者 dean w

2020年11月15日

Very Challenging and Rewarding

創建者 Koshanov A

2020年10月15日

очень удобно, кратко и понятно

創建者 Paul S

2020年4月16日

Very interesting and enjoyable

創建者 Elizabeth N

2020年4月2日

Very good applied introduction

創建者 Muhammad Z H

2019年9月1日

Learnt a lot Professor. Thanks

創建者 RAJESH M

2019年8月6日

Nice course, Practice oriented

創建者 Jan P

2018年7月11日

great course - I learnt a lot!

創建者 Riahi L

2017年10月19日

very good course, I enjoyed it

創建者 Ruchi S

2017年8月9日

deep yet simple to understand.

創建者 Sajit K

2017年6月25日

Insightful and hands on course

創建者 DIVYA G

2021年9月8日

it was a very good experience

創建者 Chris P

2021年3月9日

Great survey of ML w/ Sklearn

創建者 Devjyoti M

2020年8月1日

It was an amazing experience.

創建者 Renjith

2020年4月8日

Awesome course, good learning

創建者 Dongsoo J K

2017年7月18日

Very good and straightforward