Chevron Left
返回到 Applied Machine Learning in Python

學生對 密歇根大学 提供的 Applied Machine Learning in Python 的評價和反饋

4.6
7,860 個評分
1,430 條評論

課程概述

This course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit through a tutorial. The issue of dimensionality of data will be discussed, and the task of clustering data, as well as evaluating those clusters, will be tackled. Supervised approaches for creating predictive models will be described, and learners will be able to apply the scikit learn predictive modelling methods while understanding process issues related to data generalizability (e.g. cross validation, overfitting). The course will end with a look at more advanced techniques, such as building ensembles, and practical limitations of predictive models. By the end of this course, students will be able to identify the difference between a supervised (classification) and unsupervised (clustering) technique, identify which technique they need to apply for a particular dataset and need, engineer features to meet that need, and write python code to carry out an analysis. This course should be taken after Introduction to Data Science in Python and Applied Plotting, Charting & Data Representation in Python and before Applied Text Mining in Python and Applied Social Analysis in Python....

熱門審閱

FL
2017年10月13日

Very well structured course, and very interesting too! Has made me want to pursue a career in machine learning. I originally just wanted to learn to program, without true goal, now I have one thanks!!

AS
2020年11月26日

great experience and learning lots of technique to apply on real world data, and get important and insightful information from raw data. motivated to proceed further in this domain and course as well.

篩選依據:

701 - Applied Machine Learning in Python 的 725 個評論(共 1,415 個)

創建者 Danish R

2017年7月2日

P.S.: This is not an easy course to complete

創建者 Amey k

2022年1月9日

best course for machine learning enthusiast

創建者 Sudipta D

2021年10月29日

this course helps me to building my skills.

創建者 roberto T

2020年8月17日

Good course, especially on the applied side

創建者 Ranjit K

2020年7月26日

Great Learning with good examples and tasks

創建者 Olivier R

2020年7月1日

Highly Recommended, the Instructor is great

創建者 刘宇轩

2017年12月14日

The last homework is great and interesting.

創建者 Thodoris N P

2017年10月26日

Most complete Machine learning course ever.

創建者 MIFTAHUL J

2020年11月30日

very organized and helpful course. Thanks!

創建者 Anurag B

2019年6月8日

Great Content, Great Delivery, Thumbs Up!!

創建者 Darío A

2018年6月2日

Excellent course to get into sci kit leran

創建者 Drew O

2017年10月8日

Great course. Challenging and informative.

創建者 Mohsen

2017年8月3日

I've learned a lot. Very practical course!

創建者 Ayush R

2020年11月9日

very well details of concept and learning

創建者 Puran Z

2020年6月1日

Great course. I love it, thank professor.

創建者 MOH S

2020年5月19日

Excellent content and perfect instructor.

創建者 Jay G

2020年3月20日

Thank you so much for this amazing course

創建者 Yang L

2019年11月28日

love the final assignment. Had great fun!

創建者 Gustavo H d N

2019年8月31日

Good balance between theory and practice.

創建者 dan s

2017年12月30日

Fantastic Course. I highly recommend it.

創建者 Tinniam V G

2017年9月7日

Terrific course. Many thanks to the Prof!

創建者 Nguyen T S

2021年11月16日

T​hank you! this course is very helpful.

創建者 Vaneeza I

2021年8月29日

Highly recommended courses for beginners

創建者 William H

2019年9月2日

Excellent instructor and course material

創建者 Patrick K

2018年11月22日

Very nicely explained. Highly recommend.