Chevron Left
返回到 Mathematics for Machine Learning: PCA

學生對 伦敦帝国学院 提供的 Mathematics for Machine Learning: PCA 的評價和反饋

4.0
1,604 個評分
358 條評論

課程概述

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

熱門審閱

JS

Jul 17, 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

JV

May 01, 2018

This course was definitely a bit more complex, not so much in assignments but in the core concepts handled, than the others in the specialisation. Overall, it was fun to do this course!

篩選依據:

301 - Mathematics for Machine Learning: PCA 的 325 個評論(共 358 個)

創建者 Nouran G

Oct 11, 2018

Course is inconsiderate to new learners in that new concepts were very sloppily introduced. Like the first two courses of the specialization, this course is shallow, shouldn't be anyone's introduction to the subject and is a refresher at best. Unlike the other two courses, it assumes python knowledge, doesn't explain relevant syntax in the assignments; which made me take a lot of long unnecessary detours to get the python implementation right.

創建者 Marvin P

Apr 24, 2018

After the other two awesome courses of the specialization this one stays far behind my expectations. Weakest course of the specialization. Instructor is obviously knowledgeable but does not provide much intuition. Programming assignments are really difficult and at many points frustrating. 2 more weeks and therefore comprehensive instructions would be desirable. Couldn't appreciate that course as much as I wanted to.

創建者 Michalis D

Jul 22, 2019

After having done the first two parts of the specialization, I am afraid this one didn't stand up to the high quality bar the previous two had set. The programming assignments are unnecessarily long and complex and the overall material is not as engaging, connected and concise. I might give it a good rating as a standalone but now I can't avoid comparing it to the other two parts of the specialization.

創建者 Daniel A

May 09, 2020

Compared to the first modules in this series, the instructor explains almost none of the intuitions behind the maths and will skip over large essential pieces required to complete assignments and quizzes. It assumes a wide knowledge of programming and broader maths that was handled significantly better in the earlier courses.

創建者 Daniel U

Sep 27, 2018

Programming assignments seemed to be written from a completely different direction, and instructions are vague and misleading. (The math assignments were not so bad.) There was no staff or mrntor engagement in the forums during the period of the course.

創建者 amit s

Feb 08, 2019

Unlike the prior courses in the series, topics not clearly explained and brought too sudden. Also none of calculations shown completely, instructor just wrote results in the end. Due to all these reason I was not able to finish the course.

創建者 Kevin L

Sep 11, 2018

The course assignments could be improved dramatically, though the course itself has very good content if you want to have a taste of how linear algebra (predominantly) can be implemented to solve machine learning problems.

創建者 shashank s

Feb 17, 2020

First two courses in this series are great but not this one. Lectures and exercises are not related. I do not feel like I have totally understood PCA. Was able to complete the final assignment thanks to the internet.

創建者 Ivo R

Nov 16, 2019

The theory is well explained and the level of complexity is very similar to a University course, but the assignment environment is buggy and the assignments are poorly designed and very frustrating.

創建者 raghu c b

Apr 04, 2020

Needs to demo a little bit of code owing to the complexity of the course content.Lectures gives just a high level understanding only. Assignments are taking far more complicated than expected.

創建者 Vignesh N M

Sep 12, 2018

Explaination of many things are skipped, assumption was made by the instructor that lot of things were already known by the learner. It could have been much better.

創建者 Maksim S

Mar 25, 2020

The difficulty of the course is inadequate and the pace is not balanced. Requires a lot of search for additional resources to understand materials. I cancelled.

創建者 Martin H

Dec 08, 2019

Lack of examples to clarify abstract concepts. Big contrast in quality compared to the other courses in this specialization.

創建者 Xiao L

Jun 03, 2019

very wired assignment, a lot of error in template code. The concept is not clear.

創建者 Aravindan B

Sep 24, 2019

Need to improve the content and delivery of content.

創建者 Scoodood

Jul 28, 2018

Video lecture not as intuitive as previous courses.

創建者 Michael B

Nov 21, 2019

Programming assignments not well explained

創建者 ABHI G

Aug 22, 2018

not so good

:(

創建者 Pradeep K

Apr 30, 2020

Very Poor course on PCA, My recommendation. Don't watch it, Please don't waste your money on it.

Reasons:

1) The course on algebra and calculus was intuitive geometrically and well taught. Here the instructor bothered only doing derivations. No intuition based thinking, no analogy to real world. Just plain hard notations.

2) I don't think even the instructor would understand what was taught in the course. The excercises were completely unrelated to what was taught. Not much given examples. The examples choosen uses values like 0,1,2. Why can't you pick some odd numbers to make it bit more non confusion and clear.

3) At the end there was a review / Survey for every course. The review for this course is disabled. Clearly everyone knows how bad this is. Remove this course or make it better that is what the recommendation. There is no provision for zero stars, Had there one I would not given that also.

Really frustrated with the PCA course. Please don't waste your time and money . Get Gilbert Strang's book. That will do justice for every penny. I was able to complete the course, All thanks to Gilbert's book on Linear Algebra. Thanks

創建者 Alistair K

May 16, 2020

The instructor is extremely dry and monosyllabic and does a very poor job of explaining topics, he frequently introduces topics by jumping straight into formulas without bothering to explain the topic or the use of the subject he is supposed to be explaining.

The majority of lectures are no more that the lecturer reading our a formula parrot-fashion onto the screen, he makes no effort to make the subject informative or explain what is going on. In many cases, he doesn't even bother creating a lecture, he simply posts a link to Wikipedia.

Lectures, quizzes and assignments are littered with bugs and omissions.

A negative mark on an otherwise excellent specialisation. This lecturer has no place teaching, he made the whole subject unapproachable.

創建者 Gabriel W

May 23, 2020

I did the 3 specialization lessons "Mathematics for Machine Learning" (Linear Algebra, Multivariate Calculus, PCA). I really had a lot of fun and learnings in the first one (5 stars for Linear Algebra): David Dye is an increadible teacher. The second one is okay (3 stars for me). In the third one (PCA) the expected knowledge difference between the lessons (easy to follow) and the programming tasks of weeks 2 and 4 was to high and to much challenging for me. I had no fun to pass the corresponding tests and I have finished the lessons with the only one target to be done. It doesn't correspond to what I'm looking for when I'm learning during my week-end.

創建者 Pavel S

Dec 13, 2019

The course has two problems:

complete lack of participation of staff in maintaining it. This leads to students giving each other incorrect advice and sharing incorrect code which passes the grader function check ( the grades are assigned automatically). The advice students give each other are frankly so wrong it is shocking.

the teacher focuses on formalised proof rather than concepts. Hence the lectures turn into lecturer applying mathematical transfomations which end in a formal argument without any intuitive understanding of the underlying subject. This course is the worst of the module with linear algebra and multivariate calculus being much better

創建者 熊华东

Jun 08, 2018

This course is far far far behind my expectations.The other two course in the specializition is fantastic. There is no visualization in this course, Instructor is always doing his algebra, concepts are poorly explained. I can't understand a lot of concepts in this course because of my poor math background.But why do i take ths course if i have a solid background in math? Programming assignments is not difficult but hard to complete because of vaguely clarification.Plenty of time wasted to find what should i do, its' really frustrating.

創建者 Nathan R

Jan 22, 2020

This was a terrible course in every way possible. DO NOT waste your time and money on it. The lecturer skips over things way too fast and delivers poor explanations, and then gives ridiculously hard programming assignments when this course is supposed to be mainly about maths. Moreover, he asks quiz questions about topics he doesn't even cover in the lectures, and the answers provided are terrible. Very poor quality course, which is a shame, because the other two courses in this specialization are actually worth doing.

創建者 Horacio G D

Jul 31, 2019

Feedback for the assignments sucks! The discussion forums don't help. I have to submit the last assignment last 6 times until it work, and I still don't know why my previous versions didn't pass. Other than that, the lectures are actually very good, but the only one worth the time is the fourth one, the other three are just the first course (Linear Algebra) all over again.