Chevron Left
返回到 Sequence Models

學生對 deeplearning.ai 提供的 Sequence Models 的評價和反饋

4.8
19,057 個評分
2,058 條評論

課程概述

This course will teach you how to build models for natural language, audio, and other sequence data. Thanks to deep learning, sequence algorithms are working far better than just two years ago, and this is enabling numerous exciting applications in speech recognition, music synthesis, chatbots, machine translation, natural language understanding, and many others. You will: - Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs. - Be able to apply sequence models to natural language problems, including text synthesis. - Be able to apply sequence models to audio applications, including speech recognition and music synthesis. This is the fifth and final course of the Deep Learning Specialization. deeplearning.ai is also partnering with the NVIDIA Deep Learning Institute (DLI) in Course 5, Sequence Models, to provide a programming assignment on Machine Translation with deep learning. You will have the opportunity to build a deep learning project with cutting-edge, industry-relevant content....

熱門審閱

WK

Mar 14, 2018

I was really happy because I could learn deep learning from Andrew Ng.\n\nThe lectures were fantastic and amazing.\n\nI was able to catch really important concepts of sequence models.\n\nThanks a lot!

AM

Jul 01, 2019

The course is very good and has taught me the all the important concepts required to build a sequence model. The assignments are also very neatly and precisely designed for the real world application.

篩選依據:

1901 - Sequence Models 的 1925 個評論(共 2,035 個)

創建者 Gautam D

Jun 17, 2019

To be completely honest, I loved Dr. Andrew's method of teaching. But the assignments just flew over my head because I didn't have enough hours of practice of Keras under my belt. I know Keras is there to make things easy but it's very difficult to just trying to pass the grader. To goal of assignments was fantastic, I mean, generating music, etc. sounds really amazing but I feel that if there was some more time given to make us better in Keras and other technicalities then I would've loved this course much more!

創建者 Javed S

Mar 29, 2018

Good but i expected more. The main thing i like about first 3 courses, they were really deep. In the last two courses we have skipped the backpropogation. Now this is something which you can keep optional. I like the way Andrew Ng teaches, going to the basics, and that is why I came here and paid 40 euros per month. Also, there are few stuff missing like Generative models, Adversarial networks, GAN and etc. It would be good if Andrew can have more courses related to this and deep (as it is deep learning :))

創建者 John S

Feb 03, 2019

Interesting and full of excellent lectures as always for Andrew Ng. The programming assignments quality was not as good as the other courses in the Deep Learning specialisation though. They drop straight into Keras with no information/introduction, use several complex model architectures without explanation, in week 3 4 out of the 5 'your code' exercises were about audio sampling, not very relevant. Again, excellent lectures, just not great programming examples.

創建者 Wolfgang G

Jul 12, 2018

Sorry to say they dropped the ball on this one. The last course of this specialisation has the most advanced topics thrown at you in just three weeks, and it's even more cookbook-like than in the previous courses. The material of this part of the specialisation would require a whole course in itself, perhaps for +10 weeks. Here, I found it is at best a guide for self-study, _if_ you have the time for that. Also, support in the forums was very minimal.

創建者 Bradly M

Apr 17, 2019

The scope of this course was highly relevant to me, but unfortunately many of the class materials were broken or otherwise incorrect, making some ungraded portions of the assignments difficult or impossible to achieve. Activity on the discussion boards indicates many people have tripped over this for at least the better part of a year, but no corrections have been made. This was quite frustrating and wasted a good amount of my time.

創建者 Yevgen S

Jul 22, 2019

I took this course after a long pause after I finished the first 3 courses. I would NOT recommend doing it that way. As a result, I felt rusty on some of the coding practices.

I think the course gives great introductory information on RNNs and LSTMs. The first two weeks of the course are spot on. However, I think the third week is lacking. I had hard time making a connection between the lecture material and the assignments.

創建者 Adam J

Dec 02, 2019

This course was at a really high-level and barely scratches the surface of Sequence Models. Didn't really go into much detail behind any of the theory, and the programming assignments were mostly done for us, so you don't really end up learning much. You certainly won't be ready to have a job solving NLP problems after taking this course. If you want that, you're better off going through actual college courses online.

創建者 Eero L

Jun 07, 2019

The course content and Andrew Ng are great. The submission process of the assignments is absolutely dreadful. You might get 0 points for correct answers or not, depeding on...well, I have no idea on what. Maybe it's Jupyter Notebook, maybe it's Keras or maybe it's something else. But you must have good search engine skills, since you will most likely spend a lot of time in searching the discussion forum for answers.

創建者 Aliaksandr P

Mar 31, 2018

This is a very interesting topic. However, I believe the course itself can be improved. I believe there can be more information about NLP and sequence models in lectures. It would be nice to add lectures with practical suggestions about training and tuning sequence models. There were lots of typos and mistakes in notebooks that were found by other fellow students and not addressed by mentors.

創建者 Heyang W

Feb 19, 2018

The course overall isn't as good as the previous 4 ones especially for the PA part, I can pass the grader even with wrong output. The PA improvement sometimes just create more discrepancy. The PA is just a walk through of how to building those basis models, but those little bugs will drain extra hours to figure out. I think this course is kind of a prototype one especially on PA part.

創建者 Peter F

Feb 20, 2018

Compared to the previous courses, this was a disappointment. There is not as much content as I expected and the homework exercises are not well prepared. If one spends more time with debugging than with "learning concepts" in a basic course like this, then something seems wrong.

Moreover, in a situation where so many people pay so much money (because of Andrew Ng's credit)...

創建者 Vivek G

Dec 27, 2019

That was tough, how the weights are stored and their dimensions inside the 'time steps' can be explained by adding one more video, btw the course is awesome if you want to learn the basics of sequence models, you should have completed the previous 4 courses before diving into this. I will always remain thankful to Andrew Ng for providing this type of platform.

創建者 Odinn W

Jan 13, 2019

Positives : Excellent lecture material. Assignments broadly are well structured. HIgh bar set by Andrew Ng. Negatives: Assignments have too many errors and mistakes as of Jan 2019 (especially but not only in the optional / ungraded sections) for me to be confortable 100% recommending the course. Instructions for assignments are also not fully fleshed out.

創建者 Sumandeep B

Mar 30, 2018

This course is good for introduction to sequence networks, but I felt this is not at par with the previous course 4 (CNN). This feels a bit hurriedly done, with many important things only just touched upon. This should have been a 4 week course like the previous module. Then due attention could have been given to the field of speech, audio, sequence domain.

創建者 Krzysztof J

Feb 04, 2018

The course is generally good. However there are some issues with lecture videos editing (some sentences are said multiple times), and with activities (e.g. default settings hardcoded in one of notebooks, didn't let have output shown as reference, also in some cases automated grader has some assumptions, which need to be found using trial and error method).

創建者 Jérôme B

Feb 19, 2018

I've got mixed feelings about the whole Specialization. Many very interesting topics, but on the other hands I don't feel like there's any takeaway knowledge for me. Until the very end I've been feeling completely lost in the exercices. I'm proud to have been able to hold on until the end but I'm not sure it's been an useful use of my time.

創建者 Aditya B

May 09, 2019

Really interesting course with fascinating applications. However, in terms of difficulty, it is a significant step up from all the previous courses. A lot of time is spent figuring out the syntax even though the concepts are crystal clear. ( Probably as it is a collaboration with NVIDIA). The programming assignments could be improved.

創建者 Romain L

Mar 25, 2019

The course was great, as ever. But some of the programming exercises were very frustrating. Oscillating from very easy to very difficult, with some unclear (and sometimes erroneous) instructions. I felt this was in sharp contrast with the previous 4 courses of this specialisation, for which the course and exercises were perfect.

創建者 Hans E

Mar 03, 2018

Great lectures, great teacher!

I would have given 5 stars but for the problems in the exercises / grader. Some problems that are know for weeks or even months are not resolved. This causes many wasted hours for many hundreds of students. Please solve this and make it a 5 star course.

Many thanks to Andrew Ng and the mentors!

創建者 Richard S Z

May 17, 2018

The lectures were OK ... better LSTM tutorial by Chris Olah

The exercises really need some review ... very frustrating ... and not all that illuminating .

The course was a good intro to DNN ... but I think either replace Week 3 - Structuring ML Projects with a course on Keras ... or add a course just on Keras.

創建者 Piotr D

Nov 17, 2018

The course does not explain how to use Keras (it's assumed you've finished the previous course). What's more a lot of code parts is implemented in some difficult way (for loops instead of Python's builtins and idioms like any or list comprehensions). I'd love to see more materials on speech recognition.

創建者 Suresh D

Mar 26, 2018

I guess as the subject matter becomes more complex, more training is required on the underlying frameworks being used- Keras, TensorFlow etc. Did not feel that sufficient time was spent on understanding the underlying frameworks. Also the TA work is of spotty quality. But I love the way Andrew teaches.

創建者 Devin F

Mar 11, 2018

For me, there was a large gap on time between when course 4 and 5 were offered (months). This unfortunately was enough for me to forget everything I learned about Keras.

Of course, this course assumes you know Keras so I was behind for the labs

Material is interesting though.

創建者 Kerry D

May 15, 2018

Too many thing introduced in programming assignments without explanation. Why the high dropout values? Why sometimes one dropout layer, sometimes two? Many things are just given as a formula, and not explained in a way that would let me make my own network for my own problem.

創建者 Mason C

Sep 12, 2018

Had to rate this lower due to problem with the final assignment. Submission and saving situation was a nightmare, I had to redo my work several times. Please fix this, it's a real downer at the end of the course. Otherwise, content stellar as always.