If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "superpower" that will let you build AI systems that just weren't possible a few years ago.
In this course, you will learn the foundations of deep learning. When you finish this class, you will:
- Understand the major technology trends driving Deep Learning
- Be able to build, train and apply fully connected deep neural networks
- Know how to implement efficient (vectorized) neural networks
- Understand the key parameters in a neural network's architecture
This course also teaches you how Deep Learning actually works, rather than presenting only a cursory or surface-level description. So after completing it, you will be able to apply deep learning to a your own applications. If you are looking for a job in AI, after this course you will also be able to answer basic interview questions.
This is the first course of the Deep Learning Specialization....

Sep 02, 2019

I highly appreciated the interviews at the end of some weeks. I am currently trying to transition from a research background in Systems/Computational Biology to work professionally in deep learning :)

May 31, 2019

I have learnt a lot of tricks with numpy and I believe I have a better understanding of what a NN does. Now it does not look like a black box anymore. I look forward to see what's in the next courses!

篩選依據：

創建者 Rajneesh S

•Oct 08, 2017

I really enjoyed this course. Andrew really knows this topic very well and his passion shows in his teaching. The course was structured very well and was very easy to follow.

I underestimated the knowledge of math required for deep learning. I was never very good at math and it really has been a while I learned vectors, matrices, calculus etc., but this course gave a nice introduction to the math that is needed. However, for me personally, I still had to go back and learn the basic math concepts. Khan Academy and YouTube videos were very helpful.

I am very good in coding. However this course made me realize that there is not much coding as such for deep learning. Python libraries really makes it easy. You need to understand the mathematics and formulas, and after that, its all about the test data and your hyper parameters.

Unfortunately I have to take a break as I have to travel for business, but I am highly motivated and I will definitely return and complete the other courses for specialization.

創建者 Sebastian J

•Sep 10, 2017

Wonderful introduction to deep neural networks and the theory behind them. Programming exerices make for a fun way to try out concepts introduced in this course. Andrew has mastered the delivery of complex concepts and math behind neural networks in a systematic and discrete chunks, which allows for easier absorbsion of the material. One thing in particular that this course really shines at is looking at the computation graph of forward propagation and using it to explain derivatives used in backward propagation. This is one thing I missed in Andrew's Machine Learning course. Another subtle change which I found to have a big impact on the ability to reason about various computations in the choice on how to organize input and parameter matrices used in neural network modeling. I found the choices presented in this course a lot more intuitive than the ones in ML class. Many thanks to Andrew and his assistants for putting together this material.

創建者 Nkululeko N

•Apr 05, 2020

The first course is very good for beginners, however if one has no background skills on how to program in python like myself, then this course is a bit challenging. Implementing all of what I've learned to the Juypiter Notebook using python 3.0 was a bit tricky but understandable as you learn. I feel happy and motivated to continue and finish the whole specialization course. I have a strong background in integration calculus, but because the last time I had to do calculus was years ago, it was also a bit tricky to understand some of the calculus concepts presented in the course. I think for the first time user, it will be highly advisable coming from my own thoughts that the student learn Calculus mathematics first and as well as the python specialization course before delving into this Deep learning course. I know the lecturer mentioned that it is not necessary to know Calculus maths, but personally I feel like people need it a lot.

創建者 Novin S

•Feb 05, 2018

I liked the course very much. The videos and steps to get me to the point that I can really implement the concepts was very much helpful. Although I feel that I need more practice by programming. I think it would have been better if more programming practices provided.

Many of the programming parts that was related to the preparation of the data was provided. Maybe it could be beneficiary to do those parts on our own as well.

The forum is so crowded and hard to find my way around. Maybe something can be done about that as well.

In general I really liked the course, and I think it was the best way to learn the Neural Networks. Now I feel more confident to dive into text books and more mathematics of the NN. I would also like to add that I really loved the "heros" part. Get to know the community, history, and learning about the way that the pioneers and creators of a topic think was very helpful for me.

Thank you and good job

Novin

創建者 Maxim S

•Jan 26, 2018

Dr Ng is an outstanding teacher. I like that the material was presented gradually and incrementally, without large gaps. I never felt like I was thrown into the deep end and forced to fend for myself, like I did in courses from at least one Coursera competitive. On the few occasions that I ran into problems with the assignments, browsing the forums was really helpful. With so many people in the class, there was always someone else who has run into the same issue I had experienced. Mentors are pretty diligent about responding to questions. I still struggle a bit with the math since it's been 20 years since I've had it in college. Wish I were still able to derive the equations Dr Ng used. It is great that Dr Ng provided derivations as optional lectures. One issue I have is that the choice of layer sizes hasn't been covered. Perhaps, it'll be covered in future courses in the specialization. Thanks.

創建者 Ramesh K

•Oct 20, 2019

I have taken a couple of Neural Network classes at university level for my master's. I did learn a lot but this course on Deep Learning introduced me to concepts I had never had the chance to encounter in those classes. I enjoyed taking this class as well working on the assignments. The assignments are excellent even if most of the coding has been done for you. It is up to the student to understand the underlying code and to pick up Python if she/he has not encountered Python before. In this course, it is important to understand the core concepts before progressing to more complex concepts. I found myself frequently getting lost and having to revert to earlier topics to understand later topics.

It was a pleasant experience working with Jupyter notebooks, something I did not have the familiarity with.

Kudos to Andrew and team for making this course an enjoyable and rewarding learning experience.

創建者 shunjie l

•Jan 03, 2019

Have you taken a course and has no idea what the lecturer is talking about ? If yes, I am happy to report that it is not the case with this course.

The materials are easy to follow and the video lectures's pacing is perfect for anyone with no experience with neural networks. They are well designed to help students to understand the basics of Neural networks by keeping materials focused but yet detailed enough.

Also, I have to applaud to Dr A. Ng's lecture delivery. Never once would he make students feel lost or discouraged, and he drop little encouragements along the way. It is like preventive-medicine, in the sense that he anticipated and took measures, to allow students to stay engaged and interested. Kudos !

TLDR: For anyone who has little to no background in Machine Learning and is interested in understanding rather than just knowing the basics with Neural Network, this course is for you.

創建者 Ben T

•Aug 28, 2017

This was really good. Well paced and thought out. Paid attention to explaining the underlying fundamentals of math as well as the required Python programming elements. Important intuitions on how things work were useful for understanding the greater scheme of things. Also enjoyed the weekly "Heroes of Deep Learning" videos.

I completed the inaugural cohort of another online deep learning course and whilst it covered a lot of great material and current research in a short time the pacing was often too fast and as a complete beginner I was a little overwhelmed; feeling like I was always missing key concepts. I also found that Andrew Ng's videos contained less about personality and hype and felt like they were on a more personal level than some kind of mass market video.

I definitely feel like I've learned something useful and I look forward to the other courses in this specialisation.

創建者 Anders N

•Jul 07, 2019

Easy to follow. My previous knowledge of calculus enabled me to verify some of the statements on my own which gave me a deeper understanding of the limitations and opportunities in the neural networks. However the training was designed so that I believe a person with zero calculus experience would learn how to write and run the code and feel they understood a lot more about deep learning.

Its incredibly rewarding to learn a skill that take you over the buzz-word level. This training gave me enough to have an intelligent discussion with industry experts, and even propose changes in algorithms that they had not considered them selves. This is more value than I expected. Granted, I spend quite a lot of time revisiting the material presented and making my own analysis during the course, but it would never have gotten to this level without Andrew Ng. I am totally impressed!

創建者 Linda R

•Sep 04, 2017

This course is excellent! Andrew Ng is a man on a mission. He believes that Deep Learning will change the world, and this sequence of courses is his way of bringing Deep Learning everyone with a little background in programming and machine learning. This first course in the sequence meets the goal of explaining both the theory and implementation of forward and backward propagation with a clarity I had not seen before. As expected by anyone who has seen Ng’s previous course on Machine Learning, Ng’s lectures are well prepared and presented. He has paid special attention to using the appropriate notation, a real challenge in a subject plagued with so many indices. The practice questions give a good review of the lectures, and the programming exercises are very well done. The $49 charge for grading is well worthwhile, even if one is not aiming for a certificate.

創建者 VLADIMIR G

•Aug 24, 2017

Finally Neural Networks & Deep Learning course explained extremely well! I can say this after completing Hinton's one and looking for a lot of articles, books and videos online - nothing is in comparison! I stand up and applaud to Andrew Ng (and people involved) with this course.

Every single detail I wanted to know is explained here in a very clear and simple way with a lot of carefully made examples and practical tasks provided for you to understand all required concepts even better!

After completing this part of Deep Learning specialization i feel confident about fundamentals and core NN/DL concepts and will move further with specialization completion & into AI world!

BONUS suggestion: I used space ambient music all the time on the journey throughout this course. It gave me some Star Wars feeling and made the experience so much more fun and interesting! Try it! :)

創建者 David M

•Sep 01, 2017

Good summary of the basics of machine learning with neural networks. This course takes you by the hand and does not rush things. If you are new to the field and/or you are not comfortable with math and programming, it will be an enlightening experience. If you find the algebra and programming parts trivial, you can always fast-forward them and still get a useful (and entertaining) bird's-eye view of how artificial neural networks work.

All the algebra involved is laid out with extreme detail and the programming assignments manage to be very guided while being interesting and engaging.

Andrew's previous course used Matlab/Octave but this time everything is in python, and the assignments are done online in Jupyter notebooks. This is a great improvement both in terms of the course experience and in the skills learned (as today python is much more useful than matlab).

創建者 Atul A

•Aug 17, 2017

Excellent course! 👍 I finished the course in under 24 hours. 💪

This course dives right into practical implementations after the initial theory of machine learning and neural networks. Andrew Ng's explanations of core theoretical concepts are both superb and solid. He gives a brief overview of important concepts (such as gradient descent, forward prop, back prop, learning, etc) and then jumps into implementation.

I loved the Jupyter Notebook assignments! They are great in understanding how to implement NN from scratch, going from basic to more advanced.

I did feel that some people might find the math notation a bit heavy or tedious (I did); however, it is important. I would have liked to see perhaps a simpler notation first, then a more complicated one.

Overall, highly recommend this course to anyone looking to get into this exciting journey of Deep Learning!

創建者 Rohan G

•Jul 01, 2019

I *almost* didn't take this course as the specialization mentioned Tensorflow as designated deep learning framework for all assignments. I was more inclined towards PyTorch. My big mistake. The course has 3 programming assignments and none of them require the use of any framework. You implement everything (gradient descent, cost function, back prop etc) from scratch, using just Python & NumPy. And that's a great thing. Trust me. I would watch weekly videos and when the time came for implementation, I was forced to re-watch them multiple times to fully grok key concepts. All frameworks (Keras, PyTorch, Tensorflow) abstract and hide lots of complexities, and I believe when you are just starting to learn Deep Learning, wrestling with complexities and stitching things by hand is the correct way forward. This *has* to be everybody's first deep learning course.

創建者 Björn K

•Jan 21, 2018

It's very clearly laid out and since it's not too long (4 weeks) it feels like you accomplish a lot as you finish each week. The programming assignments are well laid out with a lot of boilerplate already programmed for you. The course also gives you some basics in how a utility library "NumPy" works which is valuable in itself. Personally I don't care about Python, but the knowledge I've gained I can apply in more modern languages like Haskell and F# without any problems.

If I have any criticism it is that it's almost a little too easy to pass the course without completely understanding it. So there's some responsibility on your part to study extra on the side if you want a deeper understanding. But to be honest, I think difficulty level of this course is very reasonable, I don't have any university degree in mathematics or anything and I had no problems.

創建者 Kryštof C

•Oct 31, 2018

This learning course helped me to sort my previous knowledge about neural networks (NN). It is very good for beginners and intermediate students of computer science. Students (anyone taking the course) with mid-advanced knowledge of calculus can see the math behind, which can help them understand the topics more deeply. For students without this knowledge - the teacher has explained the NN topics from enough-high perspective, so the architecture is clear, but some calculations might not be 100% clear then. On the other hand for basic fun with NN, it is sufficient. I would recommend this course to everyone who is starting with NN. One more recommendation for the creators of the course: Adding one lecture on feature extraction (just high-level one) might significantly help the students to understand the complexity of the deep/machine learning problematic.

創建者 Jerry H

•Nov 24, 2017

I liked the deeper dive (accidental pun) into neural networks, nice follow-up course to the Machine Learning. I particularly like the use of Jupyter Notebook, to build up the code in logical segments. The way the notebook is structured, it helps one get a better understanding of the key concepts, and then write the code to implement. As this is the first time I have coded in Python, the provision of the coding framework allowed one to concentrate on the specific code to execute the function. This saved a lot of time and provided a good way to learn Python (at least for my learning style). Look forward to the next course. Note: I wouldn't mind seeing a small exercise that illustrated the application of neural networks to a non-classification problem. Based on a comment in the lecture, I assume this is possible using the reLU activation function.

創建者 Daniel J D

•Aug 19, 2018

I feel really torn between giving this course a full five star rating or a 4 star, and the only reason is that the second to last project seemed to report back that L_backward or something like that worked perfectly, and yet when I submitted the notebook, that one came out missing credit.

If that was unintentional, then it would seem to be a flaw, and that's what bothers me. If it was intended that we would be fooled into thinking everything was OK by the results or by what the function returned and if it was intended that we would do more to track down any possible errors, then I would rather give the course all five stars. Not knowing this, I would rather give 4 1/2, but we're not apparently allowed to do that. So my four point score was more to help inform of the problem than to dock the course a point as the course really is superb.

Dan

創建者 Jerome M

•Sep 09, 2017

I dropped out of college because I thought math was too hard. Eventually landed in analytics due to a weird series of events. Now, I'm taking up deep learning and I have not only learned neural networks, I actually started _loving_ the math behind it all. My favorite part is how Andrew Ng always emphasizes that this is an empirical (read: trial and error) process, and that it's not as sexy nor as scary as most people make it out to be. The course itself is well-paced and the resources are perfect. As a Python dev on the side, there can be better ways to do some things BUT I totally feel that the current style is perfect even for non-programmers (who I think are at the most disadvantage here, since the math as I said before is covered very well). Highly recommended and totally looking forward to the next courses in this specialization!

創建者 Aaron L

•Nov 04, 2017

This class made a good use of learning but also some tradeoffs of not diving too deep (yet) into some machine learning concepts. I am also taking, and have almost completed the class "Machine Learning", which uses Octave. For me, that class could be a recommended pre-requisite to this one because there was some overlap but the "Machine Learning" class dives deeper into some of the concepts and helped me understand more in this class.

Lastly, Andrew Ng, if you are reading this, you are doing a great job of being the Coursera co-founder and teaching all of these classes. I don't know how you do it. Thank you for all of your and your staff's hard work. Please keep it up. I'm a web developer, and for the coming AI revolution, courses like this should be required learning for people in the software field in my opinion. Thank you.

創建者 Victor D

•Oct 20, 2018

Really great crash course into the low-level mechanics of deep learning. While not too math-heavy, presents the visual/mathematical intuitions for what gradient descent is doing and why it is so powerful. Simultaneously demystifies what at first blush can seem like an intractably difficult field to break into. Professor was A+ clear, articulate, and easy to follow. Interviews were hit-or-miss but the "hits" certainly helped get you thinking about the state of the field and the future possibilities. I definitely feel as if I now have the lexicon to intelligently read articles about "deep learning" and "neural networks" and at least know what's going on under the hood. Looking forward to the next course in the series where we advance from more "low level" functionality to more high level implementations like tensorflow & keras.

創建者 Paolo P

•Jan 14, 2018

Mr. Ng is great as usual, so it's still 5 stars. However, I was tempted to bump off a star when comparing it to mr. Ng's Machine Learning course. This course is less systematic, and sometimes it feels like it's skipping forward too fast, especially when it goes through all of those backpropagation formulae. Also, it feels like the material is not completely finished: the useful written recaps in between videos are gone, and in-video tests are there up to a certain point, and then disappear. Finally, the English transcript contains so many errors, it's nearly useless.

On a positive note, the Python exercises with Jupyter are even better than the Octave exercises in the Machine Learning course, which were already excellent.

That being said, this is another great course. My advice: take Machine Learning before you take this one.

創建者 KrishnaGopal S

•May 21, 2018

Dr Andrew Ng has ensured that the learner is on the same page with him on every frame of the video - that's quite a huge commitment from him throughout the course! His sequencing of the learning content in video and programming exercises has been so meticulously planned that the learner always feels at home, as if attending the class in person. He has picked up and explained some of the latest approaches from the very recently published papers. His practical advice on optimization of algorithms, shows that he is not only an academic par excellence but also one of the most insightful deep learning practitioner. Thank you prof, you have given a new direction for me to dedicate myself to and the entire credit goes to you! My best wishes to you and your team in all your pursuits at deeplearning.ai, landing.ai, drive.ai and.

創建者 Felix E

•Oct 07, 2017

Great introduction to Neural Networks.

Starts off with explaining the fundamentals and model of Logistic Regression and goes on to expand the model to shallow NN's and deep NN's. Since every step in between was explained in detail, it was easy to follow and left no questions open. If you've done the Machine Learning course before, some of the content will feel a bit repetitive. But that's the good thing about online courses: you can just skip forward if you already know something.

Using Jupyter Notebook for the programming assignments is, in my opinion, a major step up from the Octave/Matlab format, and I've really enjoyed it. The only slight criticism: The exercises felt, at time, almost too easy. Not sure if that's actually a criticism or rather a compliment to how well the content was explained throughout the course...

創建者 李婷

•Jun 29, 2018

This course is about the neural network, including a basic understanding of deep learning, logistic regression (no hidden layer), neural network (one hidden layer), deep neural network (several hidden layers).Compared with Machine Learning courses delivered by Andrew NG, this course focus on neural network. So we can get more knowledge and understanding about the neural network.We can understand almost all of the information taught here. For every hard part, Andrew presented a great way to help understand. The coding part is fascinating. It is separated, so everytime we could focus on one part. And we don't need to master python too much. Because I think we were given all of the instructions we need. It is not easy, because we need to understand the algorithms when we deal with the assignments.It is a great course.