Chevron Left
返回到 机器学习基础:案例研究

學生對 华盛顿大学 提供的 机器学习基础:案例研究 的評價和反饋

4.6
12,351 個評分
2,960 條評論

課程概述

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

熱門審閱

PM
2019年8月18日

The course was well designed and delivered by all the trainers with the help of case study and great examples.\n\nThe forums and discussions were really useful and helpful while doing the assignments.

BL
2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

篩選依據:

2626 - 机器学习基础:案例研究 的 2650 個評論(共 2,870 個)

創建者 Sayam N

2020年9月25日

Excellent

創建者 Aishwarya S

2020年7月5日

very nice

創建者 Zhen W

2017年7月5日

Good ~~~~

創建者 Kevin C N

2016年12月10日

Thanks!!!

創建者 Oriol P

2016年3月30日

Was nice!

創建者 Sreemannarayana B

2016年2月23日

Excellent

創建者 Oumar D

2016年2月21日

Efficient

創建者 DEBASISH M

2020年9月21日

Like it.

創建者 John M

2018年7月4日

Liked it

創建者 Phoenine

2018年12月23日

So good

創建者 Deleted A

2020年8月14日

good

創建者 YEDURADA J K

2020年8月10日

nice

創建者 Rohan B R

2020年6月24日

nice

創建者 vishwak

2020年6月21日

cool

創建者 Dr. A S M M R

2020年6月6日

Good

創建者 楊傑綸

2015年12月29日

Cool

創建者 王博

2015年11月13日

nice

創建者 Brijmohan S

2018年3月22日

V

創建者 Sofia P

2016年3月12日

I did not have a lot of experience in machine learning, so this course was very good in the aspect of introducing people to machine learning concepts. Most of the times the material was very well explained, and I like the concept of the tutor writing on the screen at the same time they are presenting, personally it helps me more. Some of the quizzes were easy so you did not need a lot of preparation, some of them were more difficult or troublesome, like the quiz for Deep Learning. I also liked the graphlab module, I think that learning how to use it will help me with my own work.

However, as this course does not really go in depth in the algorithms themselves, I feel that after one month and a half I have a basic idea, but I haven't learned much about how to implement machine learning on my own even in basic things, while other courses have more or less the same time frame and are more dense in their material. In my opinion, this whole introductory course would just be just splitted and each of these intrductory weeks would be appended as the first week of the subsequent modules to come. Because anyways, after 4 months in the specialization, if somebody continues to the recommender systems module for example, he/she would have forgotten the basics of this so they would need to cover again the recommender systems week in this course. And from the other hand, if some introduction is again repeated in the subsequent modules, then why have this introductory course anyways?

Thanks.

創建者 Denys G

2016年1月13日

The biggest downside of the course is that instead of learning on open source machine learning modules (sklearn) the course offers Dato's GraphLab, a proprietary piece of software that requires paid licenses to operate.

To be clear, during the duration of the course students can use a student license that provides graphlab for free but this expires after a year. It seems like fine software but if you arent going to purchase a license after the class expires whats the point? Also, Graphlab is built on top of python2.7. If you are running python 3.0+ on your machine youll have to install a python 2.7 instance.

Otherwise the quality is solid. The philosophical approach the professors take is to give you a taste of a variety of machine learning models. The upside is that if you want to get a taste you can. The downside the course feels pretty shallow and then the next course in the specialization -- regression -- feels like a pretty stark contrast. In general it could be argued that this is a problem with all coursera courses. How do you modulate course difficulty when you could be targeting students who are somewhere between high school kids to computer scientists? So the course and the specialization tilts between very easy and very hard.

創建者 Steven D

2016年9月11日

The course is effectively a tutorial on how to use proprietary software to solve a range of machine learning problems.

I liked the fact that the course covered a wide range of problems quickly. There were however two issues that I did not like.

1) It is not well supported and given that the technology is proprietary, there are few other places that offer support (i.e. you can’t just look at problems and solutions on stackoverflow to get insight into the tech)

2) For a course labelled as “intermediate”, it presented very little detail. Most of the course was dedicated to explaining particular problems, the solution to which was inevitably “then you train this really clever, one-line algorithm we have written for you and you query it for insights”. I felt a little cheated by this approach to a subject which should be really fascinating.

While some of my concerns may be addressed in follow on courses, I am left with little insight into what really lies ahead. For example, is this really an “intermediate” course? What background do I really need? Will we ever get to the detail or will I always just be expected to call someone else’s brilliant algorithm and accept the result.

創建者 Monika K

2016年5月1日

It should be 5 stars based on content - though I have a feeling it's a bit dragged out to create as many courses as possible for the Speclialisation.

However, I think IPython isn't a great tool for this, especially as the requirement is Python 2.7 for GraphLab as it doesn't support Python 3 yet. Going backwards, I think. I also think ideally you would want to encourage people to write bigger chunks of code rather than get bogged down with word counting.

However, the main issue is that the assignments are really badly put together. It's actually hard to understand what the underlying requirements are at first read - from about Week 3 onwards. The concepts are easy to understand, it's the way they are worded and jumbled. I had to read them over and over again because there is a fair amount of jumping around and since there is filtering of the data, the order you carry out the tasks matter very much.

I was looking forward to this course and planned to take 3 but now I regret paying for this one and thinking about finding another one. I think the tool and the messiness of the assignment make this Specialisation not up to the task, sorry.

創建者 Christina

2016年5月26日

I think this course is a relatively well put together, gentle introduction to machine learning. It would be good for people with zero experience with ML, who might be overwhelmed by other ML courses (Ng, Abu-Mostafa) out there. This course would not be useful for anyone who has any previous knowledge of ML.

Many reviewers have taken issue with the software used. I actually liked the Dato libraries a lot, but I'd be uncomfortable using proprietary software for research. I thought it was friendly enough to be appropriate for this kind of intro class, and I really enjoy iPython notebooks for interactive teaching.

I rated this course a 3 because of the price for the full course. This part of the specialization should be free. It does not provide enough instruction, practice, or content for the cost. Multiple choice quizzes are used to grade the programming assignments, so there is no feedback from the instructors. These answers are not made available to students in the free tier, which flies in the face of open learning. I am disappointed in the recent push to monetize courses. Please don't pay for this one.

創建者 Manohar P

2016年3月8日

Having almost completed this course, I can say that this course provides a basic over view of the concepts of ML. Quality and content are lacking. The professors, breeze thru the concepts in few short videos. No further guidance is available. You are on your own.

While the quizzes test the concepts learned, no live help is available. Again, you are on your own.

1. Some course materials should be provided other than basic fancy power point slides. The lectures don't do justice to the material content and quizzes. Some reference materials or write ups would be greatly helpful.

2. Teaching assistants or moderators should be made available for each course to help out with any conceptual or programmatic questions. Students are left to collaborate amongst themselves and figure out a solution. For a paid course, I expect some real professional help.

Many a times, I had to turn to google to help me out if I was stuck at a problem or didnt understand a concept. If googling was the only option, then I do not see a value in this course.

I doubt if I will continue the other courses in this specialization.

Thanks!

創建者 Cliff H

2016年6月10日

The instructors are great and the material logically detailed. The only problem is feed back or lack thereof. The assignments are hard for a person who has minimal computer skills as described in the outline, so having someone to go to for questions, especially the programming parts are essential and this is lacking unfortunately. Apparently, and I don't want to put words in someone else's mouth, but the assumption is that the fellow students will have the missing information and that they will actually answer them. That is not the case unfortunately. So even though I emailed the instructors with no response, I managed to obtain some information from other student who were extremely dedicated and much more advanced. I may have entered the course at a minimal personnel time which may account for my perceived difficulty. However, from some of the griping, I am not alone. On the other one gets what they pay for and I was overall glad to take the course and respect all the aspects except for the one already mentioned.