Chevron Left
返回到 Machine Learning: Classification

學生對 华盛顿大学 提供的 Machine Learning: Classification 的評價和反饋

3,633 個評分
599 條評論


Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....



A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)


Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!


476 - Machine Learning: Classification 的 500 個評論(共 568 個)

創建者 Luis d l O


Very easy to follow and didactic. Very good material in the assignments.

創建者 Sander v d O


Simply a great course. Good intro to machine learning classifiation.

創建者 Franklin W


Great beginner/advanced course for Machine Learning Classification!

創建者 Pascal U E


Take you too long to come back, but the content is great. Good job

創建者 Michael B


Good survey of the material, but assignments are superficial.

創建者 vardan l


Some instructions in programming assignments are not clear.

創建者 charan S


Very nice course, detailed explanations and visualizations.

創建者 Sahil M


Was a good course with some in-depth topics covered!

創建者 Jiancheng


good course but too much easy, can be a good review.

創建者 Hanqiao L


Need more content for SVM and Random Forest

創建者 Alejandro T


It's a really good course, really liked it

創建者 Mohit G


Good, insightful but repetitive coding.

創建者 Sah-moo K


Decision trees and boosting were great.

創建者 Chitrank G


The course is excellent for beginners.

創建者 Gareth W J


A good course to teach the key points.

創建者 Hexuan Z


could be more challengable homework!!

創建者 Vladislav V


It feels like it lacks certain depth.

創建者 Shashwat G


Course material can be much better

創建者 Farmer


Exercises are way too easy.

創建者 Aadesh N


Great course materials

創建者 Xiaojie Z


Can be more detailed.

創建者 Ragunandan R M


Good overall course.

創建者 2K18/SE/035 A K


content is complete

創建者 Lim W A


Learnt new things.

創建者 Mehul P


Nice explanation.