課程信息

7,060 次近期查看
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
可靈活調整截止日期
根據您的日程表重置截止日期。
中級
完成時間大約為7 小時
英語(English)
字幕:英語(English)

您將學到的內容有

  • Understand the definitions of simple error measures (e.g. MSE, accuracy, precision/recall).

  • Evaluate the performance of regressors / classifiers using the above measures.

  • Understand the difference between training/testing performance, and generalizability.

  • Understand techniques to avoid overfitting and achieve good generalization performance.

可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
可靈活調整截止日期
根據您的日程表重置截止日期。
中級
完成時間大約為7 小時
英語(English)
字幕:英語(English)

提供方

加州大学圣地亚哥分校 徽標

加州大学圣地亚哥分校

教學大綱 - 您將從這門課程中學到什麼

1

1

完成時間為 2 小時

Week 1: Diagnostics for Data

完成時間為 2 小時
6 個視頻 (總計 49 分鐘), 4 個閱讀材料, 3 個測驗
6 個視頻
Motivation Behind the MSE8分鐘
Regression Diagnostics: MSE and R²6分鐘
Over- and Under-Fitting6分鐘
Classification Diagnostics: Accuracy and Error11分鐘
Classification Diagnostics: Precision and Recall12分鐘
4 個閱讀材料
Syllabus10分鐘
Setting Up Your System10分鐘
(Optional) Additional Resources and Recommended Readings10分鐘
Course Materials10分鐘
3 個練習
Review: Regression Diagnostics8分鐘
Review: Classification Diagnostics4分鐘
Diagnostics for Data30分鐘
2

2

完成時間為 2 小時

Week 2: Codebases, Regularization, and Evaluating a Model

完成時間為 2 小時
4 個視頻 (總計 35 分鐘)
4 個視頻
Model Complexity and Regularization10分鐘
Adding a Regularizer to our Model, and Evaluating the Regularized Model8分鐘
Evaluating Classifiers for Ranking4分鐘
4 個練習
Review: Setting Up a Codebase2分鐘
Review: Regularization5分鐘
Review: Evaluating a Model5分鐘
Codebases, Regularization, and Evaluating a Model45分鐘
3

3

完成時間為 1 小時

Week 3: Validation and Pipelines

完成時間為 1 小時
4 個視頻 (總計 24 分鐘)
4 個視頻
Validation5分鐘
“Theorems” About Training, Testing, and Validation8分鐘
Implementing a Regularization Pipeline in Python5分鐘
Guidelines on the Implementation of Predictive Pipelines5分鐘
3 個練習
Review: Validation4分鐘
Review: Predictive Pipelines6分鐘
Predictive Pipelines20分鐘
4

4

完成時間為 2 小時

Final Project

完成時間為 2 小時
2 個閱讀材料
2 個閱讀材料
Project Description10分鐘
Where to Find Datasets10分鐘

審閱

來自MEANINGFUL PREDICTIVE MODELING的熱門評論

查看所有評論

關於 Python Data Products for Predictive Analytics 專項課程

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • 如果订阅,您可以获得 7 天免费试听,在此期间,您可以取消课程,无需支付任何罚金。在此之后,我们不会退款,但您可以随时取消订阅。请阅读我们完整的退款政策

  • 是的,Coursera 可以为无法承担费用的学生提供助学金。通过点击左侧“注册”按钮下的“助学金”链接可以申请助学金。您可以根据屏幕提示完成申请,申请获批后会收到通知。您需要针对专项课程中的每一门课程完成上述步骤,包括毕业项目。了解更多

還有其他問題嗎?請訪問 學生幫助中心