Chevron Left
返回到 Bayesian Statistics: Techniques and Models

學生對 加州大学圣克鲁兹分校 提供的 Bayesian Statistics: Techniques and Models 的評價和反饋

4.8
429 個評分
138 條評論

課程概述

This is the second of a two-course sequence introducing the fundamentals of Bayesian statistics. It builds on the course Bayesian Statistics: From Concept to Data Analysis, which introduces Bayesian methods through use of simple conjugate models. Real-world data often require more sophisticated models to reach realistic conclusions. This course aims to expand our “Bayesian toolbox” with more general models, and computational techniques to fit them. In particular, we will introduce Markov chain Monte Carlo (MCMC) methods, which allow sampling from posterior distributions that have no analytical solution. We will use the open-source, freely available software R (some experience is assumed, e.g., completing the previous course in R) and JAGS (no experience required). We will learn how to construct, fit, assess, and compare Bayesian statistical models to answer scientific questions involving continuous, binary, and count data. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. The lectures provide some of the basic mathematical development, explanations of the statistical modeling process, and a few basic modeling techniques commonly used by statisticians. Computer demonstrations provide concrete, practical walkthroughs. Completion of this course will give you access to a wide range of Bayesian analytical tools, customizable to your data....

熱門審閱

JH
2017年10月31日

This course is excellent! The material is very very interesting, the videos are of high quality and the quizzes and project really helps you getting it together. I really enjoyed it!!!

CB
2021年2月14日

The course was really interesting and the codes were easy to follow. Although I did take the previous course for this series, I still found it hard to grasp the concepts immediately.

篩選依據:

101 - Bayesian Statistics: Techniques and Models 的 125 個評論(共 138 個)

創建者 pritam s

2021年7月24日

I have learned a lot from this course

創建者 Evgenii L

2018年5月2日

A very good course to introduce yours

創建者 Luis H

2017年7月30日

Rather useful and easy understanding

創建者 JOSE F

2018年2月11日

Very challenging but interesting!

創建者 Nikola M

2019年4月7日

one of best stats courses I had

創建者 Ge T

2021年2月13日

Easy to follow. Great content.

創建者 PAWAN S

2020年9月8日

EXCELLENT COURSE ....

創建者 Chen N

2019年4月8日

Amazing, super cool!

創建者 Luis A

2019年6月6日

Excellent course.

創建者 Thais P

2017年7月1日

Very good curse!!

創建者 Neha K

2020年9月14日

excellent course

創建者 sameen n

2020年4月30日

Amazing course.

創建者 Harshit G

2019年5月9日

Great course.

創建者 Michael B R

2017年12月29日

Great course!

創建者 Yiran W

2017年6月11日

Very helpful!

創建者 Aya M L N

2020年11月9日

Thanks a lot

創建者 Dongliang Y

2018年9月30日

Great class.

創建者 Dallam M

2017年6月27日

great course

創建者 SURAJIT C

2020年12月25日

Good Work!

創建者 Nancy L

2019年10月11日

Thank you!

創建者 Owendrila S

2020年9月28日

Very Good

創建者 JOYDIP M

2020年8月9日

helpful

創建者 Md. R Q S

2020年9月23日

great

創建者 MD F K

2020年8月27日

good

創建者 Clément C

2019年12月13日

Awsome course overall. I took one star away for the capstone project's correction system that I think could be improved. If felt this system to be too rigid. Maybe allowing people to give points 1 by 1 intead of just a few options (0, 3 or 5 points) would help. I also feel like too many points are awarded for criterias that are beside the point of the course (5 points for the number of pages, 5 points for knowing how to write an abstract, 3 points for redacting the problem to be answered). This skills however important were not taught in this course and are unfair to evaluate in my opinion.