The objective of this course is to introduce Markov Chain Monte Carlo Methods for Bayesian modeling and inference, The attendees will start off by learning the the basics of Monte Carlo methods. This will be augmented by hands-on examples in Python that will be used to illustrate how these algorithms work. This will be the second course in a specialization of three courses .Python and Jupyter notebooks will be used throughout this course to illustrate and perform Bayesian modeling with PyMC3. The course website is located at https://sjster.github.io/introduction_to_computational_statistics/docs/index.html. The course notebooks can be downloaded from this website by following the instructions on page https://sjster.github.io/introduction_to_computational_statistics/docs/getting_started.html.
課程信息
1. Experience with Data Science using the PyData Stack of NumPy, SciPy, Pandas, Scikit-learn.
2. Course 1 in this Specialization.
您將學到的內容有
1. Markov Chain Monte Carlo algorithms
2. Implementing the above in Python
3. Assess the performance of Bayesian models
您將獲得的技能
- Bayesian
- Scipy
- Scikit-Learn
- MCMC
1. Experience with Data Science using the PyData Stack of NumPy, SciPy, Pandas, Scikit-learn.
2. Course 1 in this Specialization.
提供方

数据块
Databricks is the data and AI company. Founded by the creators of Apache Spark™, Delta Lake and MLflow, organizations like Comcast, Condé Nast, Nationwide and H&M rely on Databricks’ open and unified platform to enable data engineers, scientists and analysts to collaborate and innovate faster.
授課大綱 - 您將從這門課程中學到什麼
Topics in Model Performance
This module gives an overview of topics related to assessing the quality of models. While some of these metrics may be familiar to those with a Machine Learning background, the goal is to bring awareness to the concepts rooted in Information Theory. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/BayesianInference.html. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html
The Metropolis Algorithms for MCMC
This module serves as a gentle introduction to Markov-Chain Monte Carlo methods. The general idea behind Markov chains are presented along with their role in sampling from distributions. The Metropolis and Metropolis-Hastings algorithms are introduced and implemented in Python to help illustrate their details. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/MonteCarlo.html. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html
Gibbs Sampling and Hamiltonian Monte Carlo Algorithms
This module is a continuation of module 2 and introduces Gibbs sampling and the Hamiltonian Monte Carlo (HMC) algorithms for inferring distributions. The Gibbs sampler algorithm is illustrated in detail, while the HMC receives a more high-level treatment due to the complexity of the algorithm. Finally, some of the properties of MCMC algorithms are presented to set the stage for Course 3 which uses the popular probabilistic framework PyMC3. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/MonteCarlo.html#gibbs-sampling.
關於 Introduction to Computational Statistics for Data Scientists 專項課程
The purpose of this series of courses is to teach the basics of Computational Statistics for the purpose of performing inference to aspiring or new Data Scientists. This is not intended to be a comprehensive course that teaches the basics of statistics and probability nor does it cover Frequentist statistical techniques based on the Null Hypothesis Significance Testing (NHST). What it does cover is:

常見問題
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
還有其他問題嗎?請訪問 學生幫助中心。