Just as teachers help students gain new skills, the same is true of artificial intelligence (AI). Machine learning algorithms can adapt and change, much like the learning process itself. Using the machine teaching paradigm, a subject matter expert (SME) can teach AI to improve and optimize a variety of systems and processes. The result is an autonomous AI system.
提供方

Machine Teaching for Autonomous AI
华盛顿大学課程信息
Familiarity with engineering concepts like robotics and manufacturing is helpful but not required.
您將學到的內容有
You’ll select a use case where autonomous AI can outperform traditional methods—setting the foundation for designing and building an autonomous AI.
您將獲得的技能
- Machine Learning
- Decision-Making
- Intelligent Design
- Innovation
- AI Design
Familiarity with engineering concepts like robotics and manufacturing is helpful but not required.
提供方

华盛顿大学
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

Microsoft
Our goal at Microsoft is to empower every individual and organization on the planet to achieve more.
授課大綱 - 您將從這門課程中學到什麼
An Introduction to Autonomous AI & Machine Teaching
This module lays the foundation for this course and the entire specialization. You'll learn what makes autonomous AI different from other forms of artificial intelligence. You're invited to take a behind the scenes look at some organizations using autonomous AI and hear from operators and managers about the benefits they're realizing by harnessing autonomous AI. The focus will then transition to you! You'll explore five different mindset profiles that describe different approaches to building AI systems.
Analyzing the Problem
Not all problems are right for an autonomous AI solution. In this module, we explore types of automated systems and their strengths and limitations for various issues. You'll learn how to determine whether a problem needs a solution that goes beyond automated systems and into useful AI.
Learning the Solution
In the last module we looked at "automated" systems (math, menus, and manuals); examining situations where they excel and understanding their limitations. In this module we'll focus on "autonomous" systems such as: machine learning (ML), reinforcement learning (RL), neural networks (NN) and deep reinforcement learning (DRL); assessing both the strengths and weaknesses of each autonomous system. Lastly you'll see how "machine teaching" can tap into the strengths of all the automated and autonomous systems.
Storytelling
Wondering what has storytelling has got to do with AI? Good storytelling is a tool of persuasion. Dry facts and data are not as compelling as persuasion arguments. In the real world someone has to fund the development of your autonomous AI design, and you need to tell that person a persuasive story.
常見問題
我什么时候能够访问课程视频和作业?
我购买证书后会得到什么?
有助学金吗?
還有其他問題嗎?請訪問 學生幫助中心。