Chevron Left
返回到 Structuring Machine Learning Projects

學生對 deeplearning.ai 提供的 Structuring Machine Learning Projects 的評價和反饋

4.8
48,344 個評分

課程概述

In the third course of the Deep Learning Specialization, you will learn how to build a successful machine learning project and get to practice decision-making as a machine learning project leader. By the end, you will be able to diagnose errors in a machine learning system; prioritize strategies for reducing errors; understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance; and apply end-to-end learning, transfer learning, and multi-task learning. This is also a standalone course for learners who have basic machine learning knowledge. This course draws on Andrew Ng’s experience building and shipping many deep learning products. If you aspire to become a technical leader who can set the direction for an AI team, this course provides the "industry experience" that you might otherwise get only after years of ML work experience. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

熱門審閱

MG

2020年3月30日

It is very nice to have a very experienced deep learning practitioner showing you the "magic" of making DNN works. That is usually passed from Professor to graduate student, but is available here now.

TG

2020年12月1日

I learned so many things in this module. I learned that how to do error analysis and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

篩選依據:

5351 - Structuring Machine Learning Projects 的 5375 個評論(共 5,521 個)

創建者 Ondrej S

2021年7月21日

U​sefull but only theorethical course without practical excercises.

創建者 Siddhesh

2017年11月3日

It was rather disappointing because it didn't meet my expectations.

創建者 Sébastien C

2020年8月6日

Covers interesting concepts at length. Videos could be shortened.

創建者 Lambert R

2018年4月16日

Dommage qu'il n'y ait pas de TP dans ce cours (seulement 2 quizz)

創建者 Mike T

2018年7月24日

I wished there were exercises besides the quizzes in this course

創建者 Anatolii B

2018年10月1日

some quiz questions are poorly formed, a little disappointing.

創建者 Emmanuel D M

2020年4月21日

I thini the course needs more quizzess and a program exercise

創建者 C. I

2017年8月17日

Very short, not many practical examples. Lots of repetitions.

創建者 W S

2019年8月31日

Video lectures tend to be repetitious, and can be confusing.

創建者 Anthony M

2017年10月23日

Practical knowledge, but I would prefer more hands on coding

創建者 Jiheng R Z

2017年9月9日

Quite a few errors and ambiguities in the practice problems.

創建者 Zingg

2017年11月16日

The topics are interesting however the content is off par.

創建者 Axel G

2020年6月14日

Good content, but very focused on Computer Vision and NLP

創建者 Daniel D

2017年9月4日

The course es good, but it seems still under development.

創建者 Juan A C A

2017年8月30日

It would be better if you include programming exercises.

創建者 A M

2018年1月13日

It was hard to keep interested - lost focus many times

創建者 Brandon C

2018年12月6日

lacking in the usual engaging programming assignments

創建者 Varun S

2018年9月23日

Was expecting more scenarios for real data experience

創建者 Jian Z

2017年11月6日

个人感觉课程的内容比较难于理解,希望老师在设计ppt方面能给出一些完整直观的解释,有的时候书写会不是很清晰

創建者 Bogdan P

2018年9月19日

The course is OK, but it lacks programming exercises

創建者 JETTIBOINA V N D S R P

2019年7月20日

Learned new things but the course was boring.......

創建者 Tzushuan W

2019年6月1日

Wordy and too abstract without hands on experience.

創建者 Evgeny S

2018年4月5日

I would rather expect a course more like a capstone

創建者 Mirko R

2021年1月4日

It's been overall useful, but it's not "hard" ML.

創建者 Rishab K

2020年4月25日

a assignment could be given along with the theory