This course will teach you how to leverage the power of Python to understand complicated supply chain datasets. Even if you are not familiar with supply chain fundamentals, the rich data sets that we will use as a canvas will help orient you with several Pythonic tools and best practices for exploratory data analysis (EDA). As such, though all datasets are geared towards supply chain minded professionals, the lessons are easily generalizable to other use cases.
提供方


課程信息
No background required, though some general knowledge of supply chain will be helpful.
您將學到的內容有
Learn to merge, clean, and manipulate data using Python libraries such as Numpy and Pandas
Gain familiarity with the basic and advaned Python functonalities such as importing and using modules, list compreohensions, and lambda functions.
Solve a supply chain cost optimization problem using Linear Programming with Pulp
您將獲得的技能
- Data Science
- Pandas
- Numpy
- Supply Chain
- Linear Programming (LP)
No background required, though some general knowledge of supply chain will be helpful.
提供方

LearnQuest
LearnQuest is the preferred training partner to the world’s leading companies, organizations, and government agencies. Our team boasts 20+ years of experience designing, developing and delivering a full suite industry-leading technology education classes and training solutions across the globe. Our trainers, equipped with expert industry experience and an unparalleled commitment to quality, facilitate classes that are offered in various delivery formats so our clients can obtain the training they need when and where they need it.
授課大綱 - 您將從這門課程中學到什麼
Introduction to Programming Concepts and Python Practices
Welcome to the course! In this first module, we’ll learn about the fundamentals of programming and Python. We’ll start with basic data structures, functions, and loops and then some time becoming familiar with importing modules and libraries. Finally, we'll put our new skills to the test by optimizing a supply constraint problem using linear programming techniques.
Digging Into Data: Common Tools for Data Science
In this next module, we'll dive into the most common tools used for data science: Python, and Numpy. We'll start with Numpy, getting used to np arrays and their main functionality. After getting familiar with loading in data of all types, we'll learn about some basic data description and cleaning techniques. We'll also learn to work with indexes and columns in Dataframes. We'll end with an introduction to plotting and summary statistics. We will use common supply chain data sets for our explorations
Higher Level Data Wrangling and Manipulation
In this third module, we'll take our Pandas and Numpy skills to the next level, learning how to effectively combine and reshape data. We'll learn how to reshape data to fit with our needs through merges and pivots. This setup will help us tackle common data preprocessing steps necessary to run machine learning algorithms, such as one-hot encoding. Finally, we'll encounter the most important tools in our Pandas arsenal (Groupby-Apply-Transform) and explore its transformative functionality.
Course 1 Final Project
In this final project, we'll take collection of various data sets involving warehouse capacities, product demand, and freight rates to optimize cost of producing and shipping products.
關於 Machine Learning for Supply Chains 專項課程
This specialization is intended for students who wish to use machine language to analyze and predict product usage and other similar tasks. There is no specific prerequisite but some general knowledge of supply chain will be helpful, as well as general statistics and calculus.

常見問題
我什么时候能够访问课程视频和作业?
我订阅此专项课程后会得到什么?
有助学金吗?
還有其他問題嗎?請訪問 學生幫助中心。