Chevron Left
返回到 Scalable Machine Learning on Big Data using Apache Spark

學生對 IBM 提供的 Scalable Machine Learning on Big Data using Apache Spark 的評價和反饋

3.8
1,032 個評分
268 條評論

課程概述

This course will empower you with the skills to scale data science and machine learning (ML) tasks on Big Data sets using Apache Spark. Most real world machine learning work involves very large data sets that go beyond the CPU, memory and storage limitations of a single computer. Apache Spark is an open source framework that leverages cluster computing and distributed storage to process extremely large data sets in an efficient and cost effective manner. Therefore an applied knowledge of working with Apache Spark is a great asset and potential differentiator for a Machine Learning engineer. After completing this course, you will be able to: - gain a practical understanding of Apache Spark, and apply it to solve machine learning problems involving both small and big data - understand how parallel code is written, capable of running on thousands of CPUs. - make use of large scale compute clusters to apply machine learning algorithms on Petabytes of data using Apache SparkML Pipelines. - eliminate out-of-memory errors generated by traditional machine learning frameworks when data doesn’t fit in a computer's main memory - test thousands of different ML models in parallel to find the best performing one – a technique used by many successful Kagglers - (Optional) run SQL statements on very large data sets using Apache SparkSQL and the Apache Spark DataFrame API. Enrol now to learn the machine learning techniques for working with Big Data that have been successfully applied by companies like Alibaba, Apple, Amazon, Baidu, eBay, IBM, NASA, Samsung, SAP, TripAdvisor, Yahoo!, Zalando and many others. NOTE: You will practice running machine learning tasks hands-on on an Apache Spark cluster provided by IBM at no charge during the course which you can continue to use afterwards. Prerequisites: - basic python programming - basic machine learning (optional introduction videos are provided in this course as well) - basic SQL skills for optional content The following courses are recommended before taking this class (unless you already have the skills) https://www.coursera.org/learn/python-for-applied-data-science or similar https://www.coursera.org/learn/machine-learning-with-python or similar https://www.coursera.org/learn/sql-data-science for optional lectures...

熱門審閱

AC
2020年3月25日

Excellent course! All the explanations are quite clear, a lot of good quality information provided from amazing teacher. Additionally, response times for any question is very fast.

CL
2019年12月11日

Really really REALLY enjoyed this course! The instructor does a masterful job of going from simple examples and building up complexity in a very logical and thorough way.

篩選依據:

76 - Scalable Machine Learning on Big Data using Apache Spark 的 100 個評論(共 269 個)

創建者 Krishna H

2020年4月26日

Very good course!

創建者 Ever A B V

2020年3月25日

excellent course

創建者 Erickson D M d F

2020年9月20日

Excelente Curso

創建者 SAMIR B

2020年5月9日

detailed course

創建者 Julien V

2020年4月28日

Great course !

創建者 Vivek C

2020年6月14日

great trainer

創建者 harsh s

2020年10月17日

great course

創建者 Manjot S D

2020年6月17日

Masterpiece

創建者 PARITOSH P

2020年1月8日

Good course

創建者 Yassine E

2020年1月10日

Awesome :)

創建者 Dr.Lakshmi D

2020年7月8日

Excellent

創建者 Krish g

2020年5月30日

fabulous

創建者 shaik m y

2020年5月11日

Good

創建者 ashish k

2020年5月3日

good

創建者 Aaron C

2020年5月11日

TLDR for those who don't want to read through all of that, the course gives a shallow entry into the data engineering part of machine learning. I wished they would make the course more challenging, so that we would learn more.

For people considering the IBM AI engineering specialization and this course, I would say that it is a very good introduction. For those looking for a more in-depth approach to ML and DL, then this course isn't going to hit those areas. Regarding this course specifically, they did a good job explaining the concepts well. I would have preferred if they made the course proejct a lot less hand holding. They essentially give you the jupyter notebook with all the ETL procedures done, and you change like 4 variables, which isn't really intellectually stimulating or challenging. I understand that the course is meant to be an introduction, but I think asking us to do the ETL by ourselves with less rail guards would teach the students a lot more. Like I would say I learned more about Apache Spark and functional programming from the 2nd module quiz than the course project, because the quiz had us writing the code ourselves, and I had to learn and debug functions on my own.

創建者 Simon P

2020年9月26日

I can't fault Romeo for his enthusiasm and engagement in the forum, and nor do I think his accent is a problem. I can say I learned something from this course, but there are a few negatives

-- Some parts appear unprofessional. This includes the initial videos filmed in the car, the prompts stating that parts are out of date, and the on-the-fly coding in the week 3 and 4 videos

-- The course is initially jargon heavy, but it is pitched at quite a low level otherwise. There is a lot of hand-holding, for the final project you make two alterations to the code already supplied and then copy and paste the results. It would benefit from a review of the didactics.

-- I would have loved to have had more opportunity to play with the data. Why not a tutorial on using SQL or data cleaning? Why not more on the application of the ML tools? There's a definite feeling of being in a sandpit and not being allowed out.

That said, I now have experience with ApacheSpark and I understand how to use it to implement some ML methods, which is good.

創建者 Alpay S D

2020年4月13日

The content that is taught was actually satisfying, however, it is obvious most parts of the videos were outdated either due to the fact that they are for another course or they were simply not organized from the beginning. In addition, it would have been awesome If the instructor explained the codes more. I feel that I have learnt the basic idea but I need further self-study to make sense of everything we have covered in terms of the coding.

創建者 Pamela W

2020年4月15日

I enjoyed this class. I worked with Spark a few years ago, but wasn't aware of Pipelines and Parquet. The incorporation of these concepts into the course was useful. The instructor is engaging, but speaks quickly sometimes and there are some translation challenges with his accent. I found myself reading some of the material because i had trouble understanding what he was saying.

創建者 Emmanuel H

2020年6月22日

I would like to thank Romeo for teaching me. I apologize to rate the course at 3/5. I did like the course in general but I missed the practice of it. The methodology process did not help me to learn the practice. I scored better in most quizes on the first attempting while I could not guess how the code are written. I wish I did learn to interpret or rewriting the code

Regards

創建者 Ravi P B

2020年5月12日

Its a nice course and good way to start Apache Spark.But I feel its a bit too fast as well as too high level for those who are pure machine learner and deep learner practitioners on jupyters and colabs,they are gonna find it bit tough and programming part will go over the head.So Goodluck.

But its a nice way to start learning a fascinating technology of Apache Spark.

創建者 Ahmed G

2020年3月14日

The material presented in the course is important for everyone looking to go into the Data Science or Machine Learning fields, but some of the examples in the earlier chapters use Python 2 and have not been updated to Python 3. The learner has to go hunting themselves in the forums for official posts on how to fix these error (they were there).

創建者 Fabrizio D

2020年7月5日

It is a very interesting course. Some videos and lectures however should be improved:

-start with a purpose: what is the goal of this script? What do we want to learn from the dataset?

-the explanation of the sliding windows was a little bit obscure.

The scripts are useful and if the learner plays around with them she/he can learn a lot.

創建者 Artak K

2020年6月27日

Although this course introduced us to the very important idea: distributed and parallel processing, but I find it too broad and too high level. We didnt go deep into any of the topics, and the assignments are to easy(some of them are already done, you just have to find the correct number for the outputs and place it in quiz section)

創建者 bob n

2020年9月30日

Interesting, but not much opportunity to practice what is taught. Instructor walks through a lot of examples, but they are hard to follow because his notebook screen is a bit blurry. A lot of type a long, and trust me, or "we will get to this latter". Pretty easy compared to other similar coursera courses I've taken.

創建者 SITA R R K

2020年7月11日

Found this course difficult compared to others, as i am a mechanical guy. However, resources provided in this course are great. In this course unlike others requires lot of reading from resources. Finally, enjoyed this course. Only thing that troubled me is the instructors slang of English -) which is my problem not his.