Chevron Left
返回到 Linear Regression for Business Statistics

學生對 莱斯大学 提供的 Linear Regression for Business Statistics 的評價和反饋

4.8
1,279 個評分

課程概述

Regression Analysis is perhaps the single most important Business Statistics tool used in the industry. Regression is the engine behind a multitude of data analytics applications used for many forms of forecasting and prediction. This is the fourth course in the specialization, "Business Statistics and Analysis". The course introduces you to the very important tool known as Linear Regression. You will learn to apply various procedures such as dummy variable regressions, transforming variables, and interaction effects. All these are introduced and explained using easy to understand examples in Microsoft Excel. The focus of the course is on understanding and application, rather than detailed mathematical derivations. Note: This course uses the ‘Data Analysis’ tool box which is standard with the Windows version of Microsoft Excel. It is also standard with the 2016 or later Mac version of Excel. However, it is not standard with earlier versions of Excel for Mac. WEEK 1 Module 1: Regression Analysis: An Introduction In this module you will get introduced to the Linear Regression Model. We will build a regression model and estimate it using Excel. We will use the estimated model to infer relationships between various variables and use the model to make predictions. The module also introduces the notion of errors, residuals and R-square in a regression model. Topics covered include: • Introducing the Linear Regression • Building a Regression Model and estimating it using Excel • Making inferences using the estimated model • Using the Regression model to make predictions • Errors, Residuals and R-square WEEK 2 Module 2: Regression Analysis: Hypothesis Testing and Goodness of Fit This module presents different hypothesis tests you could do using the Regression output. These tests are an important part of inference and the module introduces them using Excel based examples. The p-values are introduced along with goodness of fit measures R-square and the adjusted R-square. Towards the end of module we introduce the ‘Dummy variable regression’ which is used to incorporate categorical variables in a regression. Topics covered include: • Hypothesis testing in a Linear Regression • ‘Goodness of Fit’ measures (R-square, adjusted R-square) • Dummy variable Regression (using Categorical variables in a Regression) WEEK 3 Module 3: Regression Analysis: Dummy Variables, Multicollinearity This module continues with the application of Dummy variable Regression. You get to understand the interpretation of Regression output in the presence of categorical variables. Examples are worked out to re-inforce various concepts introduced. The module also explains what is Multicollinearity and how to deal with it. Topics covered include: • Dummy variable Regression (using Categorical variables in a Regression) • Interpretation of coefficients and p-values in the presence of Dummy variables • Multicollinearity in Regression Models WEEK 4 Module 4: Regression Analysis: Various Extensions The module extends your understanding of the Linear Regression, introducing techniques such as mean-centering of variables and building confidence bounds for predictions using the Regression model. A powerful regression extension known as ‘Interaction variables’ is introduced and explained using examples. We also study the transformation of variables in a regression and in that context introduce the log-log and the semi-log regression models. Topics covered include: • Mean centering of variables in a Regression model • Building confidence bounds for predictions using a Regression model • Interaction effects in a Regression • Transformation of variables • The log-log and semi-log regression models...

熱門審閱

WB

2017年12月20日

I have found Course 3 and 4 of this specialization to be challenging, but rewarding. It has helped me build confidence that I can do just about anything with data provided to increase positive impact.

BB

2020年4月21日

Wonderful Course having in depth knowledge about all the topics of regression analysis. Instructor is very much clear about the topic and having good teaching skill. Method of teaching also very good.

篩選依據:

176 - Linear Regression for Business Statistics 的 200 個評論(共 203 個)

創建者 Colin P

2018年5月2日

創建者 Brian B

2020年5月14日

創建者 M

2018年6月6日

創建者 Yaron K

2017年4月13日

創建者 Deleted A

2017年12月27日

創建者 Liu P

2019年10月16日

創建者 Andrew A

2018年7月2日

創建者 Jose A A C

2019年4月15日

創建者 U I L

2017年12月18日

創建者 Jacob C

2017年4月8日

創建者 Abigail P

2020年7月25日

創建者 Rajat S

2020年10月23日

創建者 Romanenko Y A

2020年2月2日

創建者 Ridhi G

2018年1月17日

創建者 Prince N X

2017年6月7日

創建者 Ekambaram D k

2019年11月22日

創建者 VAIBHAV A J

2020年6月5日

創建者 Kim K

2018年8月8日

創建者 Aakash G

2020年5月16日

創建者 dipak p

2019年6月2日

創建者 Jean-Philippe M

2019年8月11日

創建者 Matteo D

2020年5月6日

創建者 Suriya N

2018年4月1日

創建者 Wesley B

2019年12月1日

創建者 Mihir M

2019年10月10日