Chevron Left
返回到 Mathematics for Machine Learning: Linear Algebra

學生對 伦敦帝国学院 提供的 Mathematics for Machine Learning: Linear Algebra 的評價和反饋

4.7
9,591 個評分
1,936 條評論

課程概述

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works. Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before. At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

熱門審閱

EC
2019年9月9日

Excellent review of Linear Algebra even for those who have taken it at school. Handwriting of the first instructor wasn't always legible, but wasn't too bad. Second instructor's handwriting is better.

PL
2018年8月25日

Great way to learn about applied Linear Algebra. Should be fairly easy if you have any background with linear algebra, but looks at concepts through the scope of geometric application, which is fresh.

篩選依據:

1851 - Mathematics for Machine Learning: Linear Algebra 的 1875 個評論(共 1,927 個)

創建者 Adam R

2018年11月16日

Some of the quizzes go beyond what is in the videos and often spent ages on them.

創建者 Nicholas K

2018年4月20日

Enough gaps that I finished feeling like I really had no idea what was going on.

創建者 David R M

2020年7月13日

Requires an understanding of python that doesn't seem to be expressed anywhere

創建者 Jose H C

2019年12月19日

I did not see any specific application of what was learned to Machine Learning

創建者 Tory M

2020年9月3日

All in all this course served as a good refresher for linear algebra.

創建者 Gary M F T

2020年10月29日

Esta en el idioma inglés. Seria factibles en el idioma español

創建者 Alejandro T R

2020年8月2日

Really difficult to understand the explanations of the course.

創建者 Ayala A

2020年7月25日

The course is good but the explanations are not clear enough.

創建者 Ninder J

2019年6月17日

not well explained...Rather than this go for khan's academy

創建者 rajiv k K

2019年7月21日

Good for rivision but I will not recommend to beginner.

創建者 omri s

2019年10月25日

Good, but a lot of stuff is not explained in detail

創建者 สิทธิพร แ

2020年5月29日

some lessons don't cover knowledge for assignment

創建者 Flávio H P d O

2018年5月11日

explanation not very clear

not enought examples

創建者 Rosana J B

2021年3月1日

muy confuso el sistema de envío de tareas

創建者 Hiralal P

2020年5月4日

they should provide more examples

創建者 Neha K

2018年10月9日

The style of teaching is great.

創建者 Lieu Z H

2019年7月25日

found the course too basic

創建者 Jadhav J N J

2020年3月2日

Good Teaching

創建者 Rafael L A

2020年7月9日

challenging

創建者 Navya V

2020年7月18日

good

創建者 Amit V

2020年9月8日

1.) This is definitely not a course for beginners, especially if one does not know how to code OR if he/ she is weak in coding.

2.) As far as lectures are concerned, the faculty members/ lecturers are energetic. While some topics have been explained really well, many topics are either left without much explanation. There are some occasional mistakes on the part of faculty, which must've been edited and rectified. They have done good job in converting the lectures in to text. However, there were some mistakes in those texts too.

3.) There is no support in discussion forums from the lecturers of this course. I have seen many questions remain unanswered for many months. This is a very big drawback.

4.) There is a huge gap between what is being taught in videos and what is being asked in assignments. We can understand this by the following corollary: In the video tutorial one teacher is showing that 1 + 2 = 3. In the assignment, students are being asked to find the roots of a quadratic equation.

5.) Some questions and even their answers too technical to be understood by many students. The attempt to explain after the completion of assignment is also too technical. There should be an attempt to dive deeper to help weaker students. If time is the constraint, then make another basic course and let that be a prerequisite of this course. But please, do not mention in the introduction of this course that there is no prerequisite.

創建者 Fuad E

2019年5月22日

It is a little messy: there are no clear definitions of Vector Space, Normed Vector Space, Euclidean Vector Space. Functions as COS and SIN are used to show basic concepts, orthogonal base, and so on. "Projection" concept always relies on base being orthogonal, projection being under 90 degree (what is 90 degree in vector space?), and space being Euclidean, although it is much simpler and applicable for just Vector Space (space without "norm" defined). Good introductory course for high-school; bad for University. Good for kids who just finished learning Pythagoras Theorem, SIN, COS, and basis of Euclidean geometry. Example of house (with number of rooms which is positive Integer number, and price which is positive Decimal) is not really a vector. Examples of non-Euclidean spaces and their applications in machine learning not provided (geometrical deep learning on graphs for example). Basic course for those completely unfamiliar with what "vector" is. Provided tests in Python are confusing because in the context we write vectors (and "base" vectors which matrix consists from) vertically, and in Python - horizontally. For example, [[1,2],[3,4]] is matrix, but it won't transform base vector [1,0] into [1,2]. This is confusing and should be mentioned before test begins.

Thank you for helping me to recall this knowledge. I finished three weeks; I may need to update review later.

創建者 Mirian A

2020年7月23日

Course: Definitely target for people that have solid understand of linear Algebra

Professor:

Pluses: Nice and clear voice, nice demeanor, good energy

Minuses: Long and sometimes messy samples presented on the board, not following through with the samples given (changing subjects causing confusion)

Area of improvement: It would make more interesting if would make connection with real life situation where we could make use of the classes. The instruction video made the class appealing because started with an example of a real life situation that could be resolved. It would be wonderful if full course would bring same excitement.

Exercises/Tests:

Pluses: Unfortunately there was no plus on the exercises. I hate to say that was all pretty bad.

Minus: They were confusing. A lot of time did not make connection with what was taught.

Area of improvement : Give explanation of the answers on the test itself and not referring back to the class. Resolving one to one exercise help making sense of the course being studied.

Course overall was not good. I am very glad I did not pay for this class. However I do think if the professor changes a few things he can nail this class same way he nailed the intro.

創建者 eklektek

2020年7月25日

The course seemed rather lazy using classical presentation methods not going the extra mile and benefitting from more model methods of visualisation and interaction. Instead the student has to hear a lot of words and try decipher the language and sketches of the speaker. I'm a native english speaker and I had problems. Complex subjects need a language that everybody can understand - visualisation.

There was finally some interactive visuals, in the fifth and final week, but these seemed more of an after thought. Also they were not integrated into the course. They would have yielded greater benefit if the lecturer used them too and pointed out specific points. Instead this information came from a few lines of explanatory text.

Generally the course material seemed like the minimum they could get away with, almost as if coursera charges hosting space.

In conclusion, the course has been beneficial, but it could have been so much more beneficial. So next I will look for a course more tightly coupled to my learning style and requirements. If this search fails I may return.

創建者 Matthew L

2020年4月8日

I am new to Coursera so I have no idea of what is standard on here. Maybe this course is good relative to other courses on here, I don't know. However I do know that based on my experience I can not recommend paying for a coursera membership to take this course. This course comes with a total of less than 3.5hrs of instructional video. Considering linear algebra is usually taught with ~45 hrs of classroom instruction, this may seem short.. and it is. The course does a good job at explaining things at a conceptual level however it has few worked through example problems. The course uses quizzes and programming assignments as a way of reinforcing skills that you learn however the correct answers to the questions on quizzes are never reviewed. So if you get something wrong you'll never know what you did wrong unless you figure it out for yourself. Also the forums don't seem to be useful at all. If you are lucky another student might reply.