返回到 Mathematics for Machine Learning: Linear Algebra

星

9,099 個評分

•

1,842 條評論

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before.
At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

CS

2018年3月31日

Amazing course, great instructors. The amount of working linear algebra knowledge you get from this single course is substantial. It has already helped solidify my learning in other ML and AI courses.

EC

2019年9月9日

Excellent review of Linear Algebra even for those who have taken it at school. Handwriting of the first instructor wasn't always legible, but wasn't too bad. Second instructor's handwriting is better.

篩選依據：

創建者 Alejandro T R

•2020年8月2日

Really difficult to understand the explanations of the course.

創建者 Ayala A

•2020年7月25日

The course is good but the explanations are not clear enough.

創建者 Ninder J

•2019年6月17日

not well explained...Rather than this go for khan's academy

創建者 Rajiv K K

•2019年7月21日

Good for rivision but I will not recommend to beginner.

創建者 omri s

•2019年10月25日

Good, but a lot of stuff is not explained in detail

創建者 สิทธิพร แ

•2020年5月29日

some lessons don't cover knowledge for assignment

創建者 Flávio H P d O

•2018年5月11日

explanation not very clear

not enought examples

創建者 Hiralal P

•2020年5月4日

they should provide more examples

創建者 Neha K

•2018年10月9日

The style of teaching is great.

創建者 Lieu Z H

•2019年7月25日

found the course too basic

創建者 Jadhav J N J

•2020年3月2日

Good Teaching

創建者 Rafael L A

•2020年7月9日

challenging

創建者 Navya V

•2020年7月18日

good

創建者 Amit V

•2020年9月8日

1.) This is definitely not a course for beginners, especially if one does not know how to code OR if he/ she is weak in coding.

2.) As far as lectures are concerned, the faculty members/ lecturers are energetic. While some topics have been explained really well, many topics are either left without much explanation. There are some occasional mistakes on the part of faculty, which must've been edited and rectified. They have done good job in converting the lectures in to text. However, there were some mistakes in those texts too.

3.) There is no support in discussion forums from the lecturers of this course. I have seen many questions remain unanswered for many months. This is a very big drawback.

4.) There is a huge gap between what is being taught in videos and what is being asked in assignments. We can understand this by the following corollary: In the video tutorial one teacher is showing that 1 + 2 = 3. In the assignment, students are being asked to find the roots of a quadratic equation.

5.) Some questions and even their answers too technical to be understood by many students. The attempt to explain after the completion of assignment is also too technical. There should be an attempt to dive deeper to help weaker students. If time is the constraint, then make another basic course and let that be a prerequisite of this course. But please, do not mention in the introduction of this course that there is no prerequisite.

創建者 Fuad E

•2019年5月22日

It is a little messy: there are no clear definitions of Vector Space, Normed Vector Space, Euclidean Vector Space. Functions as COS and SIN are used to show basic concepts, orthogonal base, and so on. "Projection" concept always relies on base being orthogonal, projection being under 90 degree (what is 90 degree in vector space?), and space being Euclidean, although it is much simpler and applicable for just Vector Space (space without "norm" defined). Good introductory course for high-school; bad for University. Good for kids who just finished learning Pythagoras Theorem, SIN, COS, and basis of Euclidean geometry. Example of house (with number of rooms which is positive Integer number, and price which is positive Decimal) is not really a vector. Examples of non-Euclidean spaces and their applications in machine learning not provided (geometrical deep learning on graphs for example). Basic course for those completely unfamiliar with what "vector" is. Provided tests in Python are confusing because in the context we write vectors (and "base" vectors which matrix consists from) vertically, and in Python - horizontally. For example, [[1,2],[3,4]] is matrix, but it won't transform base vector [1,0] into [1,2]. This is confusing and should be mentioned before test begins.

Thank you for helping me to recall this knowledge. I finished three weeks; I may need to update review later.

創建者 Mirian A

•2020年7月23日

Course: Definitely target for people that have solid understand of linear Algebra

Professor:

Pluses: Nice and clear voice, nice demeanor, good energy

Minuses: Long and sometimes messy samples presented on the board, not following through with the samples given (changing subjects causing confusion)

Area of improvement: It would make more interesting if would make connection with real life situation where we could make use of the classes. The instruction video made the class appealing because started with an example of a real life situation that could be resolved. It would be wonderful if full course would bring same excitement.

Exercises/Tests:

Pluses: Unfortunately there was no plus on the exercises. I hate to say that was all pretty bad.

Minus: They were confusing. A lot of time did not make connection with what was taught.

Area of improvement : Give explanation of the answers on the test itself and not referring back to the class. Resolving one to one exercise help making sense of the course being studied.

Course overall was not good. I am very glad I did not pay for this class. However I do think if the professor changes a few things he can nail this class same way he nailed the intro.

創建者 eklektek

•2020年7月25日

The course seemed rather lazy using classical presentation methods not going the extra mile and benefitting from more model methods of visualisation and interaction. Instead the student has to hear a lot of words and try decipher the language and sketches of the speaker. I'm a native english speaker and I had problems. Complex subjects need a language that everybody can understand - visualisation.

There was finally some interactive visuals, in the fifth and final week, but these seemed more of an after thought. Also they were not integrated into the course. They would have yielded greater benefit if the lecturer used them too and pointed out specific points. Instead this information came from a few lines of explanatory text.

Generally the course material seemed like the minimum they could get away with, almost as if coursera charges hosting space.

In conclusion, the course has been beneficial, but it could have been so much more beneficial. So next I will look for a course more tightly coupled to my learning style and requirements. If this search fails I may return.

創建者 Matthew L

•2020年4月8日

I am new to Coursera so I have no idea of what is standard on here. Maybe this course is good relative to other courses on here, I don't know. However I do know that based on my experience I can not recommend paying for a coursera membership to take this course. This course comes with a total of less than 3.5hrs of instructional video. Considering linear algebra is usually taught with ~45 hrs of classroom instruction, this may seem short.. and it is. The course does a good job at explaining things at a conceptual level however it has few worked through example problems. The course uses quizzes and programming assignments as a way of reinforcing skills that you learn however the correct answers to the questions on quizzes are never reviewed. So if you get something wrong you'll never know what you did wrong unless you figure it out for yourself. Also the forums don't seem to be useful at all. If you are lucky another student might reply.

創建者 Hendrik V

•2020年7月23日

The time commitment is not realistic unless you are a math wiz and experienced programmer. Take the timelines and multiply it by at least 5. Videos do an excellent job of presenting theory and application, but there is no supplemental learning material. You can have to find all of that on your own. In general the other students in the course are lost and have no idea what is going on. I recommend that you watch the videos and follow up the subject on something like Khan Academy where you can work through multiple examples. As for the coding part you need to find someone that knows how to code math in python. Would not recommend.

創建者 Jennifer L

•2020年7月5日

This course was pure torture. Lessons were great and interesting but then you are testied on something entirely different! You would be wise to have some knowledge of Python before starting. Be prepared to spend days trying to pass assessments that were never explained. Oh, and there's no supporting materials to help you navigate! Just thousands of pleas from other students begging for help and guidance. Took me three months to finally complete. I would have dropped by I needed it as a pre-requisite.

創建者 Oliverio J S J

•2020年4月16日

I don't think this is a good course. The explanatory videos are not bad and they are easily understood, but they seem to be a series of unrelated concepts, you wouldn't know why those concepts are explained and where the lecturers want to go. There were tasks that had a much higher level of complexity than the videos and other tasks that were trivial. As if that weren't enough, I had repeated problems due to text format in the questions, since it was difficult to distinguish the vectors and matrices.

創建者 Graham A

•2019年5月15日

Very challenging to follow instruction at times. Needs to update videos so a bit longer in order to effectively teach the content. Errors with calculations in week 3 with the Composition or combination of matrix transformations video. I've also had to utilize external resources to adequately understand what is being taught. I've taken other courses through Coursera and not had this level of frustration with the other courses.

創建者 Oliver W

•2021年1月14日

Not a fan of this course unfortunately. They jump straight into examples before going through the formula and whatnot prior. For the most part this is fine as it is all fairly straight forward, but a few times the lectures where hard to follow.

Most annoyingly were the programming assignments. Not explained at all in lectures, and for someone with Jo programming experience it was really frustrating to get my head around

創建者 Vinicius M

•2020年10月21日

This course isn't for someone who is going with no knowledge of algebra, the examples are superficial and on the quiz they ask for what they didn't teach. I recommend to learn algebra before hand, I took more time to learn in other platforms what they were trying to teach over here learning with them. So go buy an algebra course and then come back here, you will be able to take more advantage of this course.

創建者 Tony J

•2020年7月21日

Useful insomuch as it highlights the aspects of linear algebra that are key for machine learning. The lectures and exercises help you get the basics, but if you have any questions, don't expect any help from the forum. I would strongly recommend following MIT 18.06 alongside this course to gain a more solid foundation and because the lectures in 18.06 are genuinely enjoyable.

- Finding Purpose & Meaning in Life
- Understanding Medical Research
- Japanese for Beginners
- Introduction to Cloud Computing
- Foundations of Mindfulness
- Fundamentals of Finance
- 機器學習
- 使用 SAS Viya 進行機器學習
- 幸福科學
- Covid-19 Contact Tracing
- 適用於所有人的人工智能課程
- 金融市場
- 心理學導論
- Getting Started with AWS
- International Marketing
- C++
- Predictive Analytics & Data Mining
- UCSD Learning How to Learn
- Michigan Programming for Everybody
- JHU R Programming
- Google CBRS CPI Training

- Natural Language Processing (NLP)
- AI for Medicine
- Good with Words: Writing & Editing
- Infections Disease Modeling
- The Pronounciation of American English
- Software Testing Automation
- 深度學習
- 零基礎 Python 入門
- 數據科學
- 商務基礎
- Excel 辦公技能
- Data Science with Python
- Finance for Everyone
- Communication Skills for Engineers
- Sales Training
- 職業品牌管理職業生涯品牌管理
- Wharton Business Analytics
- Penn Positive Psychology
- Washington Machine Learning
- CalArts Graphic Design

- 專業證書
- MasterTrack 證書
- Google IT 支持
- IBM 數據科學
- Google Cloud Data Engineering
- IBM Applied AI
- Google Cloud Architecture
- IBM Cybersecurity Analyst
- Google IT Automation with Python
- IBM z/OS Mainframe Practitioner
- UCI Applied Project Management
- Instructional Design Certificate
- Construction Engineering and Management Certificate
- Big Data Certificate
- Machine Learning for Analytics Certificate
- Innovation Management & Entrepreneurship Certificate
- Sustainabaility and Development Certificate
- Social Work Certificate
- AI and Machine Learning Certificate
- Spatial Data Analysis and Visualization Certificate

- Computer Science Degrees
- Business Degrees
- 公共衛生學位
- Data Science Degrees
- 學士學位
- 計算機科學學士
- MS Electrical Engineering
- Bachelor Completion Degree
- MS Management
- MS Computer Science
- MPH
- Accounting Master's Degree
- MCIT
- MBA Online
- 數據科學應用碩士
- Global MBA
- Master's of Innovation & Entrepreneurship
- MCS Data Science
- Master's in Computer Science
- 公共健康碩士