課程信息
54,192 次近期查看

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為7 小時

建議:5 - 7 hours per week...

英語(English)

字幕:法語(French), 巴西葡萄牙語, 德語(German), 英語(English), 西班牙語(Spanish), 日語...
User
學習Course的學生是
  • Data Scientists
  • Machine Learning Engineers
  • Data Engineers
  • Chief Technology Officers (CTOs)
  • Biostatisticians

您將獲得的技能

TensorflowBigqueryMachine LearningData Cleansing
User
學習Course的學生是
  • Data Scientists
  • Machine Learning Engineers
  • Data Engineers
  • Chief Technology Officers (CTOs)
  • Biostatisticians

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為7 小時

建議:5 - 7 hours per week...

英語(English)

字幕:法語(French), 巴西葡萄牙語, 德語(German), 英語(English), 西班牙語(Spanish), 日語...

教學大綱 - 您將從這門課程中學到什麼

1
完成時間為 9 分鐘

Introduction

2 個視頻 (總計 9 分鐘)
2 個視頻
Intro to Qwiklabs5分鐘
完成時間為 1 小時

Practical ML

10 個視頻 (總計 62 分鐘), 1 個測驗
10 個視頻
Supervised Learning5分鐘
Regression and Classification11分鐘
Short History of ML: Linear Regression7分鐘
Short History of ML: Perceptron5分鐘
Short History of ML: Neural Networks7分鐘
Short History of ML: Decision Trees5分鐘
Short History of ML: Kernel Methods4分鐘
Short History of ML: Random Forests4分鐘
Short History of ML: Modern Neural Networks8分鐘
1 個練習
Module Quiz6分鐘
完成時間為 1 小時

Optimization

13 個視頻 (總計 60 分鐘), 1 個測驗
13 個視頻
Defining ML Models4分鐘
Introducing the Natality Dataset6分鐘
Introducing Loss Functions6分鐘
Gradient Descent5分鐘
Troubleshooting a Loss Curve2分鐘
ML Model Pitfalls6分鐘
Lab: Introducing the TensorFlow Playground6分鐘
Lab: TensorFlow Playground - Advanced3分鐘
Lab: Practicing with Neural Networks6分鐘
Loss Curve Troubleshooting1分鐘
Performance Metrics3分鐘
Confusion Matrix5分鐘
1 個練習
Module Quiz6分鐘
完成時間為 3 小時

Generalization and Sampling

9 個視頻 (總計 64 分鐘), 3 個測驗
9 個視頻
Generalization and ML Models6分鐘
When to Stop Model Training5分鐘
Creating Repeatable Samples in BigQuery6分鐘
Demo: Splitting Datasets in BigQuery8分鐘
Lab Introduction1分鐘
Lab Solution Walkthrough9分鐘
Lab Introduction2分鐘
Lab Solution Walkthrough23分鐘
1 個練習
Module Quiz12分鐘
完成時間為 3 分鐘

Summary

1 個視頻 (總計 3 分鐘)
1 個視頻
4.6
340 個審閱Chevron Right

44%

完成這些課程後已開始新的職業生涯

45%

通過此課程獲得實實在在的工作福利

29%

加薪或升職

來自Launching into Machine Learning的熱門評論

創建者 PTDec 2nd 2018

This is an awesome module. It will open up so much inside story of ML process which is core of the topic with such a simplicity. It greatly increases my interest into this topic and this course :)

創建者 PAAug 4th 2018

Good course, covering all the basics about machine learning and most importantly, everything that surrounds an ml project and you need to take into account to make your ml project successful.

關於 Google 云端平台

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

關於 Machine Learning with TensorFlow on Google Cloud Platform 專項課程

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform. > By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service < COMPLETION CHALLENGE Complete any GCP specialization from November 5 - November 30, 2019 for an opportunity to receive a GCP t-shirt (while supplies last). Check Discussion Forums for details....
Machine Learning with TensorFlow on Google Cloud Platform

常見問題

  • 是的,您可以在注册之前预览第一个视频和查看授课大纲。您必须购买课程,才能访问预览不包括的内容。

  • 如果您决定在班次开始日期之前注册课程,那么您将可以访问课程的所有课程视频和阅读材料。班次开始之后,您便可以提交作业。

  • 在您注册且班次开课之后,您将可以访问所有视频和其他资源,包括阅读材料内容和课程论坛。您将能够查看和提交练习作业,并完成所需的评分作业以获得成绩和课程证书。

  • 如果您成功完成课程,您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。

  • 该课程是 Coursera 上提供的为数不多的课程之一,目前只对已购买课程或已获得助学金的学生开放。

還有其他問題嗎?請訪問 學生幫助中心