Chevron Left
返回到 Introduction to Statistics & Data Analysis in Public Health

學生對 伦敦帝国学院 提供的 Introduction to Statistics & Data Analysis in Public Health 的評價和反饋

4.7
1,206 個評分

課程概述

Welcome to Introduction to Statistics & Data Analysis in Public Health! This course will teach you the core building blocks of statistical analysis - types of variables, common distributions, hypothesis testing - but, more than that, it will enable you to take a data set you've never seen before, describe its keys features, get to know its strengths and quirks, run some vital basic analyses and then formulate and test hypotheses based on means and proportions. You'll then have a solid grounding to move on to more sophisticated analysis and take the other courses in the series. You'll learn the popular, flexible and completely free software R, used by statistics and machine learning practitioners everywhere. It's hands-on, so you'll first learn about how to phrase a testable hypothesis via examples of medical research as reported by the media. Then you'll work through a data set on fruit and vegetable eating habits: data that are realistically messy, because that's what public health data sets are like in reality. There will be mini-quizzes with feedback along the way to check your understanding. The course will sharpen your ability to think critically and not take things for granted: in this age of uncontrolled algorithms and fake news, these skills are more important than ever. Prerequisites Some formulae are given to aid understanding, but this is not one of those courses where you need a mathematics degree to follow it. You will need only basic numeracy (for example, we will not use calculus) and familiarity with graphical and tabular ways of presenting results. No knowledge of R or programming is assumed....

熱門審閱

LA

2019年5月25日

Was a very nicely done and clear course to build or re-build foundation for most common statistical concepts and an intro to using R via R-Studio for your work with them on the basics.

SK

2019年10月11日

This is the best course among all I've taken..

The instructor has presented the content precisely.

I highly recommend to those who are looking to explore R in the field of health

篩選依據:

126 - Introduction to Statistics & Data Analysis in Public Health 的 150 個評論(共 242 個)

創建者 Marcos d S M

2021年11月20日

G​ood introduction to Data Analysis in Public Health

創建者 Muhammad A

2021年3月31日

A great course with a lot of examples for practicing

創建者 Губайдуллина А Р

2020年9月14日

Хорошие основы, многое сложилось в цельную картинку

創建者 JIANG J

2020年10月26日

A truly excellent R course for beginners like me!

創建者 Nathiya N

2020年6月6日

I found the course really interesting and useful.

創建者 bouopda k y

2020年9月30日

très interessant comme cours pour devenir expert

創建者 Marzhan N

2020年9月9日

Thank you for the interesting and useful course!

創建者 Alexandra L

2022年8月3日

this course was interesting and easy to learn

創建者 Adegorite O D

2020年7月29日

Awesome course for anyone that is interested

創建者 Norberto I T

2020年8月16日

The abililty to use R is very,very useful.

創建者 Nacho O

2019年12月7日

A great introduction, it's worth the time.

創建者 Oriolowo T A

2019年6月14日

Awesome course and the teaching was superb

創建者 salome a

2019年5月10日

Excellent introduction to statistics and R

創建者 Anderson S

2019年4月27日

I love the simplicity of the explanations

創建者 Dhan K B

2020年8月15日

Good course to get into Health analytics

創建者 Rizky M

2019年8月1日

Very helpful, and interesting lecturer !

創建者 Tanawin N

2019年9月2日

Great experience through great efforts!

創建者 AmanySamirMohamed A

2021年10月30日

m​ore helpful and add new skills to me

創建者 Yan M

2021年1月4日

Very clear! Highly recommend this one!

創建者 AGGREY G O

2020年7月16日

Highly educative with relevant content

創建者 Thomas J H

2019年3月31日

Clear and no nonsense. Do recommend.

創建者 Shaibu I

2020年4月8日

Fantastic course and lecturer, kudos

創建者 Benedict S

2021年1月30日

Was truly an up skill. well thought

創建者 Juliana P R

2020年10月18日

I've learnt a lot with this course!

創建者 Sara A

2020年3月31日

Very useful introductory course.