課程信息
4.5
1,099 個評分
117 個審閱

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為9 小時

建議:2-3 weeks of study, 8-10 hours/week...

英語(English)

字幕:英語(English), 法語(French), 巴西葡萄牙語, 德語(German), 西班牙語(Spanish), 日語...

您將獲得的技能

Application Programming Interfaces (API)EstimatorMachine LearningTensorflowCloud Computing

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

完成時間大約為9 小時

建議:2-3 weeks of study, 8-10 hours/week...

英語(English)

字幕:英語(English), 法語(French), 巴西葡萄牙語, 德語(German), 西班牙語(Spanish), 日語...

教學大綱 - 您將從這門課程中學到什麼

1
完成時間為 7 分鐘

Introduction

The tool we will use to write machine learning programs is TensorFlow and so in this course, we will introduce you to TensorFlow. In the first course, you learned how to formulate business problems as machine learning problems and in the second course, you learned how machine works in practice and how to create datasets that you can use for machine learning. Now that you have the data in place, you are ready to get started writing machine learning programs....
2 個視頻 (總計 7 分鐘)
2 個視頻
Intro to Qwiklabs5分鐘
完成時間為 3 小時

Core TensorFlow

We will introduce you to the core components of TensorFlow and you will get hands-on practice building machine learning programs. You will compare and write lazy evaluation and imperative programs, work with graphs, sessions, variables, as finally debug TensorFlow programs....
19 個視頻 (總計 72 分鐘), 4 個測驗
19 個視頻
What is TensorFlow2分鐘
Benefits of a Directed Graph5分鐘
TensorFlow API Hierarchy3分鐘
Lazy Evaluation4分鐘
Graph and Session4分鐘
Evaluating a Tensor2分鐘
Visualizing a graph2分鐘
Tensors6分鐘
Variables6分鐘
Lab Intro: Writing low-level TensorFlow programs16
Lab Solution8分鐘
Introduction5分鐘
Shape problems3分鐘
Fixing shape problems2分鐘
Data type problems1分鐘
Debugging full programs4分鐘
Intro: Debugging full programs15
Demo: Debugging Full Programs3分鐘
3 個練習
What is TensorFlow?2分鐘
Graphs and Sessions8分鐘
Core TensorFlow20分鐘
2
完成時間為 4 小時

Estimator API

In this module we will walk you through the Estimator API....
18 個視頻 (總計 67 分鐘), 4 個測驗
18 個視頻
Estimator API3分鐘
Pre-made Estimators5分鐘
Demo: Housing Price Model1分鐘
Checkpointing1分鐘
Training on in-memory datasets2分鐘
Lab Intro: Estimator API39
Lab Solution: Estimator API10分鐘
Train on large datasets with Dataset API8分鐘
Lab Intro: Scaling up TensorFlow ingest using batching35
Lab Solution: Scaling up TensorFlow ingest using batching5分鐘
Big jobs, Distributed training6分鐘
Monitoring with TensorBoard3分鐘
Demo: TensorBoard UI28
Serving Input Function5分鐘
Recap: Estimator API1分鐘
Lab Intro: Creating a distributed training TensorFlow model with Estimator API51
Lab Solution: Creating a distributed training TensorFlow model with Estimator API7分鐘
1 個練習
Estimator API18分鐘
3
完成時間為 2 小時

Scaling TensorFlow models with CMLE

I’m here to talk about how you would go about taking your TensorFlow model and training it on GCP’s managed infrastructure for machine learning model training and deployed....
6 個視頻 (總計 29 分鐘), 2 個測驗
6 個視頻
Why Cloud Machine Learning Engine?6分鐘
Train a Model2分鐘
Monitoring and Deploying Training Jobs2分鐘
Lab Intro: Scaling TensorFlow with Cloud Machine Learning Engine50
Lab Solution: Scaling TensorFlow with Cloud Machine Learning Engine16分鐘
1 個練習
Cloud MLE10分鐘
完成時間為 2 分鐘

Summary

Here we summarize the TensorFlow topics we covered so far in this course. We'll revisit core TensorFlow code, the Estimator API, and end with scaling your machine learning models with Cloud Machine Learning Engine....
1 個視頻 (總計 2 分鐘)
1 個視頻
Summary2分鐘
4.5
117 個審閱Chevron Right

44%

完成這些課程後已開始新的職業生涯

45%

通過此課程獲得實實在在的工作福利

熱門審閱

創建者 DWOct 17th 2018

pretty good. some of the code in the last lab could be better explained. also please debug the cloud shell, as it does not always show the "web preview" button ;) otherwise, good job!

創建者 SSJun 6th 2018

Nice introduce, might be more on introduce the model structure, because I still need to read additional notes to locate how to train my deep learning model online.

關於 Google 云端平台

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

關於 Machine Learning with TensorFlow on Google Cloud Platform 專項課程

>>>Look for details below for COMPLETION CHALLENGE, receive up to $150 in Qwiklabs credits<<< What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets? Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models. and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform. COMPLETION CHALLENGE For every course you complete before May 5, 2019, we will send you 30 Qwiklabs credits (upto $150 USD value)! > By enrolling in this specialization you agree to the Qwiklabs Terms of Service as set out in the FAQ and located at: https://qwiklabs.com/terms_of_service <...
Machine Learning with TensorFlow on Google Cloud Platform

常見問題

  • 是的,您可以在注册之前预览第一个视频和查看授课大纲。您必须购买课程,才能访问预览不包括的内容。

  • 如果您决定在班次开始日期之前注册课程,那么您将可以访问课程的所有课程视频和阅读材料。班次开始之后,您便可以提交作业。

  • 在您注册且班次开课之后,您将可以访问所有视频和其他资源,包括阅读材料内容和课程论坛。您将能够查看和提交练习作业,并完成所需的评分作业以获得成绩和课程证书。

  • 如果您成功完成课程,您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。

  • 该课程是 Coursera 上提供的为数不多的课程之一,目前只对已购买课程或已获得助学金的学生开放。

還有其他問題嗎?請訪問 學生幫助中心