課程信息
26,055 次近期查看

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

A basic knowledge of statistics and research methods is necessary. My previous MOOC 'Improving Your Statistical Inferences' is recommended.

完成時間大約為16 小時

建議:5 weeks of study, 2 - 4 hours/week...

英語(English)

字幕:英語(English)

您將學到的內容有

  • Check

    Ask better questions in empirical research

  • Check

    Design more informative studies

  • Check

    Evaluate the scientific literature taking bias into account

  • Check

    Reflect on current norms, and how you can improve your research practices

您將獲得的技能

Computational ReproducibilityMeta-AnalysisExperimental DesignStatistical InferencesPhilosophy of Science

100% 在線

立即開始,按照自己的計劃學習。

可靈活調整截止日期

根據您的日程表重置截止日期。

中級

A basic knowledge of statistics and research methods is necessary. My previous MOOC 'Improving Your Statistical Inferences' is recommended.

完成時間大約為16 小時

建議:5 weeks of study, 2 - 4 hours/week...

英語(English)

字幕:英語(English)

教學大綱 - 您將從這門課程中學到什麼

1
完成時間為 2 小時

Module 1: Improving Your Statistical Questions

3 個視頻 (總計 40 分鐘), 2 個閱讀材料, 3 個測驗
3 個視頻
Lecture 1.2: Do You Really Want to Test a Hypothesis?15分鐘
Lecture 1.3: Risky Predictions12分鐘
2 個閱讀材料
Download Course Materials and Course Structure (Must Read)10分鐘
Assignment 1.1: Testing Range Predictions30分鐘
3 個練習
Consent Form for Use of Data10分鐘
Welcome: Short Survey5分鐘
Answer Form Assignment 1.1: Testing Range Predictions2分鐘
2
完成時間為 3 小時

Module 2: Falsifying Predictions

3 個視頻 (總計 46 分鐘), 3 個閱讀材料, 3 個測驗
3 個視頻
Lecture 2.2: Setting the Smallest Effect Size Of Interest14分鐘
Lecture 2.3: Falsifying Predictions in Practice15分鐘
3 個閱讀材料
Assignment 2.1: The Small Telescopes Approach to Setting a SESOI30分鐘
Assignment 2.2: Setting the SESOI Based on Resources30分鐘
Assignment 2.3: Equivalence Testing30分鐘
3 個練習
Answer Form Assignment 2.1: Setting the Smallest Effect Size Of Interest8分鐘
Answer Form Assignment 2.2: Setting the SESOI Based on Resources10分鐘
Answer Form Assignment 2.3: Equivalence Testing18分鐘
3
完成時間為 3 小時

Module 3: Designing Informative Studies

3 個視頻 (總計 48 分鐘), 2 個閱讀材料, 2 個測驗
3 個視頻
Lecture 3.2: Power Analysis12分鐘
Lecture 3.3: Simulation15分鐘
2 個閱讀材料
Assignment 3.1: Confidence Intervals for Standard Deviations30分鐘
Assignment 3.2: Power Analysis for ANOVA Designs1小時
2 個練習
Answer Form Assignment 3.1: Confidence Intervals for Standard Deviations12分鐘
Answer Form Assignment 3.2: Power Analysis for ANOVA Designs20分鐘
4
完成時間為 3 小時

Module 4: Meta-Analysis and Bias Detection

3 個視頻 (總計 48 分鐘), 4 個閱讀材料, 3 個測驗
3 個視頻
Lecture 4.2: Intro to Meta-Analysis17分鐘
Lecture 4.3: Bias Detection15分鐘
4 個閱讀材料
Assignment 4.1: Likelihood of Significant Findings30分鐘
Assignment 4.2: Introduction to Meta-Analysis30分鐘
Assignment 4.3: Detecting Publication Bias45分鐘
Assignment 4.4: Checking Your Stats10分鐘
3 個練習
Answer Form Assignment 4.1: Likelihood of Significant Findings14分鐘
Answer Form Assignment 4.2: Introduction to Meta-Analysis4分鐘
Answer Form Assignment 4.3: Detecting Publication Bias14分鐘
4.9
3 個審閱Chevron Right

來自Improving Your Statistical Questions的熱門評論

創建者 LPOct 31st 2019

Daniel's second course as good as the first. He does a nice job!!

講師

Avatar

Daniel Lakens

Associate Professor
Department of Human-Technology Interaction

關於 埃因霍温科技大学

Eindhoven University of Technology (TU/e) is a research-driven, design-oriented university of technology with a strong international focus. The university was founded in 1956, and has around 8,500 students and 3,000 staff. TU/e has defined strategic areas focusing on the societal challenges in Energy, Health and Smart Mobility. The Brainport Eindhoven region is one of world’s smartest; it won the title Intelligent Community of the Year 2011....

常見問題

  • 注册以便获得证书后,您将有权访问所有视频、测验和编程作业(如果适用)。只有在您的班次开课之后,才可以提交和审阅同学互评作业。如果您选择在不购买的情况下浏览课程,可能无法访问某些作业。

  • 您购买证书后,将有权访问所有课程材料,包括评分作业。完成课程后,您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • The course assumes basic knowledge about statistical inferences (t-tests, ANOVA) and some knowledge of designing research studies. The course is for intermediate level. Coursera offers basic introductions to statistics (which this course is not), and my previous MOOC 'Improving Your Statistical Inferences' might be a better starting point if you lack training in statistics. You do not need knowledge programming in R - we will use it as a fancy calculator by changing code (but not programming).

還有其他問題嗎?請訪問 學生幫助中心