Chevron Left
返回到 Fundamentals of Reinforcement Learning

學生對 阿尔伯塔大学 提供的 Fundamentals of Reinforcement Learning 的評價和反饋

2,181 個評分
532 條評論


Reinforcement Learning is a subfield of Machine Learning, but is also a general purpose formalism for automated decision-making and AI. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world. Understanding the importance and challenges of learning agents that make decisions is of vital importance today, with more and more companies interested in interactive agents and intelligent decision-making. This course introduces you to the fundamentals of Reinforcement Learning. When you finish this course, you will: - Formalize problems as Markov Decision Processes - Understand basic exploration methods and the exploration/exploitation tradeoff - Understand value functions, as a general-purpose tool for optimal decision-making - Know how to implement dynamic programming as an efficient solution approach to an industrial control problem This course teaches you the key concepts of Reinforcement Learning, underlying classic and modern algorithms in RL. After completing this course, you will be able to start using RL for real problems, where you have or can specify the MDP. This is the first course of the Reinforcement Learning Specialization....



An excellent introduction to Reinforcement Learning, accompanied by a well-organized & informative handbook. I definitely recommend this course to have a strong foundation in Reinforcement Learning.


This course is one of the best I've learned so far in coursera. The explanations are clear and concise enough. It took a while for me to understand Bellman equation but when I did, it felt amazing!


51 - Fundamentals of Reinforcement Learning 的 75 個評論(共 533 個)

創建者 Yuri F


Very good course, you can take it at any level, if you wish just to get familiar with reinforcement learning you can watch the video and quickly read the book, but if you would like to be an expert you can deep dive in the book. i really like that the course follow some book which made it an serious course. could be nice to add some more homework (optional) with more interesting problem (e.g. gym)

創建者 Jan Z


The course was very fun and informative. I really enjoyed the presentation style with clear outlines and summaries. The explanations were useful and easy to follow. Suggestions for improvements:

1) Provide a kindle version of the book, reading on screen is very tiring for eyes.

2) I think the programming exercises could use some work from SE perspective, as some of the code is not really pythonic.

創建者 Karel V


The course is very well organised and professionally made. Although it follows the first four chapters of the Reinforcement Learning textbook, it provides a little bit different narrative and thus serves as a very nice complement to the textbook. Most importantly, interactive quizzes, programming exercises in Python and plenty of visualisations help to strengthen understanding of the concepts.

創建者 李谨杰


This course is the best course I have taken in Coursera! As a learner of RL in a non-English-speaking country, Sutton's book is too hard for me to accept a new idea very quickly. However, after watching the short videos in this course that summarize the core concepts explicitly, I can understand the contents of that book easily. Recommend for anyone who wants to study reinforcement learning!

創建者 Christian C


Exceptional course, the fundamental of RL explanations are excellent! I in particular I found it insightful the focus on thinking about examples in real-life that can be modeled as Markov Decision process. Additionally, great quizzes questions and assignments all helped in deepening my understanding of topics such as Dynamic Programing, Bellman Optimality, and Generalized Policy Iteration.

創建者 Justin S


Excellent Course! The level of difficulty is perfect. It is difficult but not impossible if you do the readings in the textbook and understand the lectures. I strongly suggest reading the book before watching the lectures. This helped my understanding significantly. The material and assignments are very interesting and informative.

Highly recommend this course to anyone interested in RL.

創建者 Bhargav D P


This course will give you the knowledge of most fundamental concepts of RL Like MDPs, Policy evaluation, policy improvement & value iteration algorithms. Even though you follow theory well, quiz and assignment will challenge your knowledge to think into bit more deeper level. frankly speaking, I took some quizzes three times and at the end I learned the concepts very well. :)

創建者 La W N


So far so good. The course is really valuable. It'll be better if there are more explanations about mathematics used but there is discussion forums so not a big problem. It is ineffective in teaching the practicality, i.e, how real word problem can be related, what kind of problems can be solved by these methods. Overall, it is a great explanation about reinforcement learning.

創建者 Joosung M


The content was very interesting, the instructors made things very clear that they were a great help in understanding what was really happening in the textbook.

I loved that this course provided a textbook with a lot of examples and case studies. I am willing to learn more about RL in the next set of courses.

Thank you so much for proving this wonderful specialization.

創建者 Thomas G


Fundamentals of Reinforcement Learning is one of the best Online Courses I did on Coursera. I like that the course is based on a text book (Reinforcement Learning by Sutton), so you can really dig into the theory. Also the exercises are very helpful and ambitious which I like. I haven't found much advanced online courses which are so well explained like this one.

創建者 Thong Q N


RL is not an easy topic, but the instructors made sure to illustrate the concepts with a lot of examples and visualizations, making it much easier to digest than reading the textbook. Guest lectures were fascinating. Programming assignments in Jupyter notebooks are super helpful with a lot of step-by-step instructions. An excellent course overall.

創建者 Silvio M


Outstanding course. Instructors are great. The course alternates between important readings and well-crafted videos, quizzes and assignments. As you progress, concepts get tangible and you start figuring out possible applications. Do check out the required background knowledge. I've immediately enrolled in the second course of the specialization.

創建者 D. R


I really liked this course. I think it was challenging and high quality. I don't understand complaints about it following the book - I found the videos, quizzes and exercises insightful and thought provoking. And besides courses are meant to follow some material and not re-invent the wheel. Am really excited for the rest of the specialization.

創建者 Nicolas L


The course was great. Very clearly explained, with meaningful examples and backup material, such as the recommended book.

My only comment will be on the case study given on the final programming assignment. The parking scenario was not very intuitive or clear for me. It took me quite a bit to understand what it was we were trying to optimize.

創建者 Jesse W


Excellent course. Covers all the basics at just the right challenge level, assuming you've had some Python programming experience and know a thing or two about probabilities and expectation values. They provide a PDF for a course textbook which is extremely well-written, and the videos are high-quality and complement the readings well.

創建者 Yanis C


This course was a great introduction to reinforcement learning. I found the material both accessible and applicable to a number of potential real-world problems. The combination of reading, video lectures, and example coding problems was an effective way to "reinforce" the course materials and build a solid foundational understanding.



After studying Classical Machine Learning and Deep Learning, and applying them in real-life cases with some startups and companies, some aspects of day to day problems did not seem to be fit while trying to use the previous methods, thus I dived into Reinforcement Learning looking for answers, and so far it's been very promising!

創建者 Luis G


I started to read Sutton & Barto book this summer, and although I find it fantastic, some concepts were not 100% clear to me. This course has changed it dramatically. Now every concept is clear to me. This book is like reading a book with the support of very good explanations.

Let's go for the 2nd course in the specialitation!!!

創建者 Jing Z


You really need to understand fundamentals before kick start for any real world reinforcement learning problem. That's why this course is very essential. Plus it also provides programming tasks and multi-choice question sheet to deepen your understanding about theories. Great! Looking forward to move on for next series!

創建者 Tom W


Really good course, and happily surprised and thankful it's based around Sutton and Barto textbook and with close links between instructors and those authors - I'd bought it a year ago with the best intentions of getting into RL, but needed something practical like this to help me get into it! Amazing work all involved

創建者 Shashank S


This course was a great first introduction to reinforcement learning! The course instructors make the material very accessible and the course follows the textbook very closely. I'd definitely recommend it to anyone trying to understand reinforcement learning and I personally plan to complete the entire specialization.

創建者 Inge J


Excellent introduction to reinforcement learning. The two instructors are well spoken and the material is interesting. This course focuses mainly on the math/concepts rather than having a lot of programming. That being said, there are a few programming assignments which will help you to increase your understanding.

創建者 George M


A very good introductory course. I agree that its content overlaps other courses on this platform. Still, the instructors never promised to create something completely different than those, so we should ignore that.

Video presenters should be a bit more relaxed to allow the audience to follow through more easily.

創建者 Dmitry N


Sometimes it was hard to follow. In those cases re-reading the book helped. It is nice that in videos you, guys, have solved some of the exercises from the book. Also, it helped a lot to re-cap the material by re-doing the tests (and of course by reading a helpful notes, if the answer was incorrect). Thank you!

創建者 Stelios S


This is the BEST course I've taken from Coursera, period. The level of explanation, the usage of mathematically precise terminology, the walking through of the algorithms, the summaries were all top-notch. This course will be my reference when I forget something in the future. I can't thank the creators enough.