課程信息

20,123 次近期查看
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
可靈活調整截止日期
根據您的日程表重置截止日期。
完成時間大約為11 小時
英語(English)
字幕:英語(English)

您將學到的內容有

  • Project structure of interactive Python data applications

  • Python web server frameworks: (e.g.) Flask, Django, Dash

  • Best practices around deploying ML models and monitoring performance

  • Deployment scripts, serializing models, APIs

您將獲得的技能

Python ProgrammingBig Data ProductsRecommender Systems
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
可靈活調整截止日期
根據您的日程表重置截止日期。
完成時間大約為11 小時
英語(English)
字幕:英語(English)

提供方

加州大学圣地亚哥分校 徽標

加州大学圣地亚哥分校

教學大綱 - 您將從這門課程中學到什麼

1

1

完成時間為 2 小時

Introduction

完成時間為 2 小時
5 個視頻 (總計 54 分鐘), 3 個閱讀材料, 3 個測驗
5 個視頻
Recommender Systems versus Other Forms of Supervised Learning7分鐘
Collaborative Filtering-Based Recommendation19分鐘
Latent Factor Models (Part 1)11分鐘
Latent Factor Models (Part 2)11分鐘
3 個閱讀材料
Syllabus10分鐘
Course Materials10分鐘
Setting Up Your System10分鐘
3 個練習
Review: Recommender Systems4分鐘
Review: Introduction to Latent Factor Models4分鐘
Recommender Systems and Latent Factor Models20分鐘
2

2

完成時間為 1 小時

Implementing Recommender Systems

完成時間為 1 小時
4 個視頻 (總計 36 分鐘)
4 個視頻
Similarity-Based Recommender for Rating Prediction7分鐘
Implementing a Latent Factor Model (Part 1)11分鐘
Implementing a Latent Factor Model (Part 2)6分鐘
3 個練習
Review: Similarity-Based Recommenders5分鐘
Review: Implementing Latent Factor Models4分鐘
Implementing Recommender Systems10分鐘
3

3

完成時間為 1 小時

Deploying Recommender Systems

完成時間為 1 小時
3 個視頻 (總計 17 分鐘), 1 個閱讀材料, 2 個測驗
3 個視頻
Intro to Django5分鐘
Flask7分鐘
1 個閱讀材料
Setting up Your Workspace with Docker: Django10分鐘
2 個練習
Review: Flask and Django30分鐘
Deploying Recommender Systems5分鐘
4

4

完成時間為 2 小時

Project 4: Recommender System

完成時間為 2 小時
2 個閱讀材料
2 個閱讀材料
Project Description10分鐘
How to Find a Dataset10分鐘

關於 Python Data Products for Predictive Analytics 專項課程

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • 如果订阅,您可以获得 7 天免费试听,在此期间,您可以取消课程,无需支付任何罚金。在此之后,我们不会退款,但您可以随时取消订阅。请阅读我们完整的退款政策

  • 是的,Coursera 可以为无法承担费用的学生提供助学金。通过点击左侧“注册”按钮下的“助学金”链接可以申请助学金。您可以根据屏幕提示完成申请,申请获批后会收到通知。您需要针对专项课程中的每一门课程完成上述步骤,包括毕业项目。了解更多

還有其他問題嗎?請訪問 學生幫助中心