Chevron Left
返回到 Deep Neural Networks with PyTorch

學生對 IBM 提供的 Deep Neural Networks with PyTorch 的評價和反饋

4.4
1,099 個評分
245 條評論

課程概述

The course will teach you how to develop deep learning models using Pytorch. The course will start with Pytorch's tensors and Automatic differentiation package. Then each section will cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning will be covered. Finally, several other Deep learning methods will be covered. Learning Outcomes: After completing this course, learners will be able to: • explain and apply their knowledge of Deep Neural Networks and related machine learning methods • know how to use Python libraries such as PyTorch for Deep Learning applications • build Deep Neural Networks using PyTorch...

熱門審閱

SY

2020年4月29日

An extremely good course for anyone starting to build deep learning models. I am very satisfied at the end of this course as i was able to code models easily using pytorch. Definitely recomended!!

RA

2020年5月15日

This is not a bad course at all. One feedback, however, is making the quizzes longer, and adding difficult questions especially concept-based one in the quiz will be more rewarding and valuable.

篩選依據:

176 - Deep Neural Networks with PyTorch 的 200 個評論(共 247 個)

創建者 TJ G

2020年1月11日

Very intensive course. Could do more training labs. But this is definitely a very dense course. Extremely helpful to get started on ML/Deep Learning.

創建者 Jian P

2020年5月10日

Good introduction of PyTorch. There are some minor code errors and inconsistencies in the material but generally not difficult to figure it out.

創建者 Mehrdad P

2020年6月24日

The courses provides basic knowledge, but I wish that it was a bit more advanced and had more challenging assignments.

創建者 Patricio V

2020年5月31日

Some of the courses are quite harsh, but finally come all togheter and there's a light at the end of the tunnel.

創建者 Yosi P

2021年5月15日

The course was great! The material and instruction is really nice. But so many typo especially in the quiz.

創建者 Yanjie T

2020年4月5日

the course is good, detailed, and practical, but the shortcoming is the lab quality, need to be imporved

創建者 肖一

2021年8月19日

It's a basic course of using PyTorch to establish CNN or other type of model,useful but kind of simple.

創建者 Pavel S

2021年6月8日

This is a nice course overall, however quizzes are very easy and course content is not 100% accurate.

創建者 Vagif M

2021年6月20日

I​ would like to get more difficult Quizez... The Labs are very detailed and understandable.

創建者 何雪凝

2021年2月21日

Detailed explanation about pytorch! I expect more examples and harder tests and assignments

創建者 Vhui77@gmail.com

2021年3月5日

Course is good but too long and the instructor may want to slow down his narrative.

創建者 William

2022年2月11日

some code were written illegible, a lot of the aftercourse quizes had typos

創建者 Nyaniso N

2021年6月30日

very long! very very long long! very very very long long long. Too long!!!

創建者 Вадим Н

2020年7月19日

generally, the course is well but tasks too easy for "intermediate" level

創建者 Krishna S B

2019年12月27日

It would have been better if graded programming assignments were there.

創建者 Volha H

2021年3月8日

It's the most difficult course in this specialisation..

創建者 kiran k

2022年5月18日

Few mistakes of words as an artificial voice was used.

創建者 Youness E M

2019年12月21日

There is a number of errors in the courses and in quiz

創建者 Bilal G

2020年3月29日

less one star due to the many errors I noticed in the

創建者 anupa s

2021年6月19日

Should have more content which covers with examples

創建者 Rahul R

2022年2月15日

A very good course to get started with pytorch

創建者 003 A P

2020年7月28日

Great Course for beginners in pytorch

創建者 harshita b

2020年5月18日

good explanation with examples

創建者 Roberto G

2020年4月12日

very practical, lack of theory

創建者 Tj

2021年4月28日

The questions are too simple.