課程信息

44,673 次近期查看
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 3 門課程(共 4 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
中級

We recommend taking Course 1 of the TensorFlow in Practice Specialization first, or have a basic familiarity with building models in TensorFlow

完成時間大約為19 小時
英語(English)
字幕:英語(English)

您將學到的內容有

  • Leverage built-in datasets with just a few lines of code

  • Use APIs to control how you split your data

  • Process all types of unstructured data

您將獲得的技能

TensorflowMachine Learning
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 3 門課程(共 4 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
中級

We recommend taking Course 1 of the TensorFlow in Practice Specialization first, or have a basic familiarity with building models in TensorFlow

完成時間大約為19 小時
英語(English)
字幕:英語(English)

講師

提供方

deeplearning.ai 徽標

deeplearning.ai

教學大綱 - 您將從這門課程中學到什麼

1

1

完成時間為 5 小時

Data Pipelines with TensorFlow Data Services

完成時間為 5 小時
14 個視頻 (總計 27 分鐘), 2 個閱讀材料, 2 個測驗
14 個視頻
Introduction1分鐘
Popular datasets2分鐘
Data pipelines58
Extract, transform, load3分鐘
Versioning datasets2分鐘
Looking at the notebook1分鐘
Introduction43
Legacy API and Subsplits5分鐘
Splits API (S3)2分鐘
Introduction22
Legacy API in code1分鐘
Splits API (S3) in code1分鐘
Week 1 wrap up43
2 個閱讀材料
Downloading the Coding Examples and Exercises10分鐘
Try out the notebook yourself10分鐘
1 個練習
Week 1 Quiz
2

2

完成時間為 6 小時

Exporting your data into the training pipeline

完成時間為 6 小時
21 個視頻 (總計 44 分鐘), 5 個閱讀材料, 2 個測驗
21 個視頻
Introduction22
Input data1分鐘
Basic mechanics2分鐘
Numeric and bucketized columns2分鐘
Vocabulary and hashed columns, feature crossing2分鐘
Embedding columns2分鐘
Introduction24
Notebook walkthrough4分鐘
Introduction19
Numpy, Pandas and Images2分鐘
CSV3分鐘
Text and TFRecord1分鐘
Generators1分鐘
Introduction17
Notebook walkthrough4分鐘
Introduction1分鐘
Numpy and Pandas2分鐘
Images1分鐘
CSV4分鐘
Text2分鐘
5 個閱讀材料
Link to the notebook10分鐘
Link to the CNN course10分鐘
Link to the notebook10分鐘
CSV: colab10分鐘
Link to the tokenization10分鐘
1 個練習
Week 2 Quiz
3

3

完成時間為 4 小時

Performance

完成時間為 4 小時
11 個視頻 (總計 20 分鐘)
11 個視頻
Introduction36
ETL2分鐘
What happens when you train a model2分鐘
Introduction25
Caching58
Parallelism APIs2分鐘
Autotuning2分鐘
Parallelizing data extraction2分鐘
Best practices for code improvements3分鐘
A few words by Laurence34
1 個練習
Week 3 Quiz
4

4

完成時間為 5 小時

Publishing your datasets

完成時間為 5 小時
11 個視頻 (總計 24 分鐘), 2 個閱讀材料, 2 個測驗
11 個視頻
Introduction44
How to start using a dataset2分鐘
Implementation4分鐘
File access and possible problems in data3分鐘
Publishing the dataset3分鐘
Introduction18
Going through the colab (1)2分鐘
Going through the colab (2)2分鐘
Closing words14
A conversation with Andrew Ng1分鐘
2 個閱讀材料
URLs10分鐘
Link to the colab10分鐘
1 個練習
Week 4 Quiz

審閱

來自DATA PIPELINES WITH TENSORFLOW DATA SERVICES的熱門評論

查看所有評論

關於 TensorFlow: Data and Deployment 專項課程

Continue developing your skills in TensorFlow as you learn to navigate through a wide range of deployment scenarios and discover new ways to use data more effectively when training your machine learning models. In this four-course Specialization, you’ll learn how to get your machine learning models into the hands of real people on all kinds of devices. Start by understanding how to train and run machine learning models in browsers and in mobile applications. Learn how to leverage built-in datasets with just a few lines of code, learn about data pipelines with TensorFlow data services, use APIs to control data splitting, process all types of unstructured data and retrain deployed models with user data while maintaining data privacy. Apply your knowledge in various deployment scenarios and get introduced to TensorFlow Serving, TensorFlow, Hub, TensorBoard, and more. Industries all around the world are adopting Artificial Intelligence. This Specialization from Laurence Moroney and Andrew Ng will help you develop and deploy machine learning models across any device or platform faster and more accurately than ever. This Specialization builds upon skills learned in the TensorFlow in Practice Specialization. We recommend learners complete that Specialization prior to enrolling in TensorFlow: Data and Deployment....
TensorFlow: Data and Deployment

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 您注册课程后,将有权访问专项课程中的所有课程,并且会在完成课程后获得证书。您的电子课程证书将添加到您的成就页中,您可以通过该页打印您的课程证书或将其添加到您的领英档案中。如果您只想阅读和查看课程内容,可以免费旁听课程。

  • 如果订阅,您可以获得 7 天免费试听,在此期间,您可以取消课程,无需支付任何罚金。在此之后,我们不会退款,但您可以随时取消订阅。请阅读我们完整的退款政策

  • 是的,Coursera 可以为无法承担费用的学生提供助学金。通过点击左侧“注册”按钮下的“助学金”链接可以申请助学金。您可以根据屏幕提示完成申请,申请获批后会收到通知。您需要针对专项课程中的每一门课程完成上述步骤,包括毕业项目。了解更多

  • 此课程不提供大学学分,但部分大学可能会选择接受课程证书作为学分。查看您的合作院校,了解详情。Coursera 上的在线学位Mastertrack™ 证书提供获得大学学分的机会。

還有其他問題嗎?請訪問 學生幫助中心