Chevron Left
返回到 大规模数据处理:系统与算法

學生對 华盛顿大学 提供的 大规模数据处理:系统与算法 的評價和反饋

4.3
757 個評分

課程概述

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams...

熱門審閱

HA

2016年1月10日

Great course that strikes a balance between teaching general principles and concepts, and providing hands-on technical skills and practice.

The lessons are well designed and clearly conveyed.

WL

2016年5月27日

I like the breadth of coverage of this class. Each of the exercise is a gem in that I get to learn something new also. I would highly recommend this even to experience practitioner also.

篩選依據:

101 - 大规模数据处理:系统与算法 的 125 個評論(共 164 個)

創建者 Tony G

2016年5月13日

創建者 Timothy R

2017年6月22日

創建者 Chuck C

2017年6月25日

創建者 Damien L

2017年11月16日

創建者 SIU C M

2015年9月29日

創建者 Abhijit S

2015年10月21日

創建者 Gregory C

2017年11月25日

創建者 Dan C

2016年6月9日

創建者 Jiancheng

2015年12月6日

創建者 Jeffrey L

2016年1月9日

創建者 Gregory T

2015年11月29日

創建者 Jack X

2017年2月12日

創建者 Krzysztof L

2016年7月27日

創建者 Sophia J

2015年10月27日

創建者 Dario P C

2016年3月25日

創建者 Vijayasenthilkumar K

2017年3月28日

創建者 Mariano S B

2016年11月19日

創建者 Theo L

2016年1月4日

創建者 Alexander B R

2017年3月22日

創建者 Brian D

2016年9月17日

創建者 Dongying Z

2019年2月9日

創建者 Bernhard S

2015年10月29日

創建者 Stefan K

2015年12月28日

創建者 Eric B

2016年5月28日

創建者 Arto P

2015年12月7日