Chevron Left
返回到 Прикладные задачи анализа данных

學生對 莫斯科物理科学与技术学院 提供的 Прикладные задачи анализа данных 的評價和反饋

4.4
695 個評分
105 條評論

課程概述

Методы машинного обучения — будь то алгоритмы классификации или регрессии, методы кластеризации или алгоритмы понижения размерности — применяются к подготовленным данным с вычисленными признаками для решения уже сформулированной задачи. Однако специалисты по анализу данных редко оказываются в такой идеальной ситуации. Обычно перед ними ставят задачи, которые нуждаются в уточнении формулировки, выборе метрики качества и протокола тестирования итоговой модели. Данные, с которыми нужно работать, часто представлены в непригодном виде: они зашумлены, содержат ошибки и выбросы, хранятся в неудобном формате и т. д. В этом курсе мы разберем прикладные задачи из различных областей анализа данных: анализ текста и информационный поиск, коллаборативная фильтрация и рекомендательные системы, бизнес-аналитика, прогнозирование временных рядов. На их примере вы узнаете, как извлекать признаки из разнородных данных, какие при этом возникают проблемы и как их решать. Вы научитесь сводить задачу заказчика к формальной постановке задачи машинного обучения и поймёте, как проверять качество построенной модели на исторических данных и в онлайн-эксперименте. На каждой задаче мы изучим плюсы и минусы пройденных алгоритмов машинного обучения. Прослушав этот курс, вы познакомитесь с распространенными типами прикладных задач и будете понимать схемы их решения. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

熱門審閱

KV

Jul 09, 2017

Курс интересен тем, что в нем рассматриваются примеры реальных задач, которые решаются в индустрии. Но мне он показался слишком простым по сравнению с 2,3 и 4 курсами. Можно усложнить его немного :)

PK

May 24, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

篩選依據:

101 - Прикладные задачи анализа данных 的 103 個評論(共 103 個)

創建者 Рядовиков А В

Nov 09, 2018

побольше бы ссылок на исследования врем рядов (я пока на 1й неделе)

創建者 Мельникова Е А

Jun 28, 2019

Вторая неделя заставила просто отписаться от курса.

Отвратительно.

創建者 Михаил

Dec 07, 2017

Самый мутный и бестолковый курс во всей специализации