Chevron Left
返回到 计算神经科学

學生對 华盛顿大学 提供的 计算神经科学 的評價和反饋

4.6
787 個評分
184 條評論

課程概述

This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing various aspects of vision, sensory-motor control, learning, and memory. Specific topics that will be covered include representation of information by spiking neurons, processing of information in neural networks, and algorithms for adaptation and learning. We will make use of Matlab/Octave/Python demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is primarily aimed at third- or fourth-year undergraduates and beginning graduate students, as well as professionals and distance learners interested in learning how the brain processes information....

熱門審閱

AG
2020年6月10日

Brilliant course. For a HS student the math was challenging, but the quizzes and assignments were perfect. The tutorials and supplementary materials are super helpful. All in all, I loved it.

CM
2017年6月14日

This course is an excellent introduction to the field of computational neuroscience, with engaging lectures and interesting assignments that make learning the material easy.

篩選依據:

76 - 计算神经科学 的 100 個評論(共 182 個)

創建者 Richard B

2016年11月10日

Excellent overview of the different areas of computational neuroscience taught by engaging academics.

創建者 Gustavo C M

2020年7月31日

An amazing course, carried at a good pace being understandable too, I will have to buy a nice hat!

創建者 Prakhya S

2020年1月20日

Absolutely enjoyed learning about Computational Neuroscience. Well explained. Highly recommend.

創建者 潘宜城

2018年10月24日

nice course which teach me about what neurons can do and how can we model them with mathmatics

創建者 Efren S

2017年12月12日

Just amazing! This course has made a great impression on me and rekindled my love for physics.

創建者 Adam L

2017年1月14日

Lectures are concise; quizzes are helpful. Great introduction to computational neuroscience!

創建者 Chinmay S H

2019年7月29日

I learned a great amount from this course. Now, I want to learn more about neural coding

創建者 CongMa

2016年10月8日

It is fantastic. For me, it could be much better if it has Chinese lyrics~ Thanks a lot~

創建者 VELAGA H P

2020年5月20日

Helped me understand how neurons work and model the same using some simple Python code.

創建者 Matheus B M

2017年4月7日

GIves a very good introduction to the field. It was quite hard on the maths some times.

創建者 Nilosmita B

2017年7月26日

Its a fantastic course for any one interested in the computational neuroscience field.

創建者 Gustavo P

2018年2月24日

Excellent course! I really learned all I wanted about this topic! Really recommended!

創建者 Arthur C

2017年5月25日

Great class for both professional in machine learning and computational neuroscience.

創建者 José M T

2017年4月14日

Congratulations !!!. You have managed to explain complex knowledge in a simple way

創建者 Faris G

2020年4月5日

Love it! Very quick, easy to understand course from the University of Washington.

創建者 Debapriya H

2020年1月13日

i like this course very much and its helpful for neuroscience future study of me.

創建者 Changjia C

2019年1月5日

Fantastic course! I enjoy it and love it very much. Thanks Rajesh and Adrienne!

創建者 Benjamin S

2018年3月17日

Awesome course, awesome introduction to the mathematical backgrounds as well!

創建者 孙嘉秋

2018年3月11日

Exercellent start on the quantatative understanding of Neurons and Networks.

創建者 Wei X

2018年12月12日

Enlightening! After this course, one know how the architecture came from.

創建者 Andrés Z

2018年4月18日

By far one of the most complete MOOCs in the subject. Highly recommended.

創建者 Hernan

2019年4月9日

Muy instructivo y entretenido! Felicitaciones a los autores del mismo.

創建者 Dr P T K

2020年7月13日

The teaching is good and easy to understand style of presentations..

創建者 Shahbaz K

2019年6月25日

Made it really easy for me to get into this field. So very inspired.

創建者 saurabh k p

2018年10月20日

Amazing Course with difficult challenges , hats off to professors :)