課程信息

54,332 次近期查看

學生職業成果

21%

完成這些課程後已開始新的職業生涯

29%

通過此課程獲得實實在在的工作福利

14%

加薪或升職
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 6 門課程(共 6 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
完成時間大約為23 小時
英語(English)
字幕:英語(English), 韓語, 波蘭語

您將獲得的技能

Big DataNeo4jKnimeSplunk

學生職業成果

21%

完成這些課程後已開始新的職業生涯

29%

通過此課程獲得實實在在的工作福利

14%

加薪或升職
可分享的證書
完成後獲得證書
100% 在線
立即開始,按照自己的計劃學習。
第 6 門課程(共 6 門)
可靈活調整截止日期
根據您的日程表重置截止日期。
完成時間大約為23 小時
英語(English)
字幕:英語(English), 韓語, 波蘭語

提供方

加州大学圣地亚哥分校 徽標

加州大学圣地亚哥分校

教學大綱 - 您將從這門課程中學到什麼

1

1

完成時間為 1 小時

Simulating Big Data for an Online Game

完成時間為 1 小時
4 個視頻 (總計 18 分鐘), 4 個閱讀材料
4 個視頻
Welcome from Splunk: Rob Reed World Education Evangelist3分鐘
A Summary of Catch the Pink Flamingo7分鐘
A Conceptual Schema for Catch the Pink Flamingo4分鐘
4 個閱讀材料
Planning, Preparation, and Review10分鐘
A Game by Eglence Inc. : Catch The Pink Flamingo10分鐘
Overview of the Catch the Pink Flamingo Data Model10分鐘
Overview of Final Project Design5分鐘
完成時間為 4 小時

Acquiring, Exploring, and Preparing the Data

完成時間為 4 小時
6 個閱讀材料
6 個閱讀材料
Downloading the Game Data and Associated Scripts10分鐘
Understanding the CSV Files Generated by the Scripts20分鐘
Optional Review of Splunk
“Catch the Pink Flamingo” Data Exploration with Splunk45分鐘
Aggregate Calculations Using Splunk45分鐘
Filtering the Data With Splunk20分鐘
1 個練習
Data Exploration With Splunk30分鐘
2

2

完成時間為 5 小時

Data Classification with KNIME

完成時間為 5 小時
4 個閱讀材料
4 個閱讀材料
Review: Classification Using Decision Tree in KNIME10分鐘
Review: Interpreting a Decision Tree in KNIME10分鐘
Workflow Overview for Building a Decision Tree in KNIME20分鐘
Description of combined_data.csv5分鐘
3

3

完成時間為 5 小時

Clustering with Spark

完成時間為 5 小時
2 個閱讀材料
2 個閱讀材料
Informing business strategies based on client base5分鐘
Practice with PySpark MLlib Clustering30分鐘
4

4

完成時間為 4 小時

Graph Analytics of Simulated Chat Data With Neo4j

完成時間為 4 小時
2 個閱讀材料
2 個閱讀材料
Understanding the Simulated Chat Data Generated by the Scripts10分鐘
Graph Analytics of Catch the Pink Flamingo Chat Data Using Neo4j2小時

審閱

來自大数据 - 毕业项目的熱門評論

查看所有評論

關於 大数据 專項課程

Drive better business decisions with an overview of how big data is organized, analyzed, and interpreted. Apply your insights to real-world problems and questions. ********* Do you need to understand big data and how it will impact your business? This Specialization is for you. You will gain an understanding of what insights big data can provide through hands-on experience with the tools and systems used by big data scientists and engineers. Previous programming experience is not required! You will be guided through the basics of using Hadoop with MapReduce, Spark, Pig and Hive. By following along with provided code, you will experience how one can perform predictive modeling and leverage graph analytics to model problems. This specialization will prepare you to ask the right questions about data, communicate effectively with data scientists, and do basic exploration of large, complex datasets. In the final Capstone Project, developed in partnership with data software company Splunk, you’ll apply the skills you learned to do basic analyses of big data....
大数据

常見問題

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

還有其他問題嗎?請訪問 學生幫助中心