返回到 Bayesian Statistics: From Concept to Data Analysis

4.6

1,310 個評分

•

350 個審閱

This course introduces the Bayesian approach to statistics, starting with the concept of probability and moving to the analysis of data. We will learn about the philosophy of the Bayesian approach as well as how to implement it for common types of data. We will compare the Bayesian approach to the more commonly-taught Frequentist approach, and see some of the benefits of the Bayesian approach. In particular, the Bayesian approach allows for better accounting of uncertainty, results that have more intuitive and interpretable meaning, and more explicit statements of assumptions. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. For computing, you have the choice of using Microsoft Excel or the open-source, freely available statistical package R, with equivalent content for both options. The lectures provide some of the basic mathematical development as well as explanations of philosophy and interpretation. Completion of this course will give you an understanding of the concepts of the Bayesian approach, understanding the key differences between Bayesian and Frequentist approaches, and the ability to do basic data analyses....

創建者 GS

•Sep 01, 2017

Good intro to Bayesian Statistics. Covers the basic concepts. Workload is reasonable and quizzes/exercises are helpful. Could include more exercises and additional backgroung/future reading materials.

創建者 JH

•Jun 27, 2018

Great course. The content moves at a nice pace and the videos are really good to follow. The Quizzes are also set at a good level. You can't pass this course unless you have understood the material.

篩選依據：

339 個審閱

創建者

•Dec 13, 2018

The instructor is very clear and the course is very well structured. Super glad I took it.

創建者 Valeth

•Dec 13, 2018

The bite-sized arrangement of individual videos are very conducive for learning and self internalisation.

創建者 Devid

•Nov 28, 2018

Need more information about linear regression, given material is not enough to understand topic and effectively find solution.

創建者 Anders Amundson

•Nov 26, 2018

Would have liked more problem solving and real-world application examples.

創建者 Susenjit Ghosh

•Nov 23, 2018

Very Useful Course

創建者 Niklas Jahnsson

•Nov 21, 2018

Good and clear course. I was impressed by the quality of the material.

創建者 Denitsa Staicova

•Nov 20, 2018

What I liked in the course is that it focuses on examples and solving actual problems. The quantity and the quality of the lectures is great, but what I really missed is written lectures where one can always lookup forgotten things or read details etc. Also, one thing that I think might be added easily is a reference to Mathematica and Maple's routines. I'm using Maple and it took some efforts to get on track. And finally, I think that 4 quizes per week is really too much for working people. It's true that the tests weren't that difficult, but it took me about an hour to do each, so I think 30 mins of lectures vs. 4 hours of quizzes is a bit unfair. Of course, my background in statistics is non-existent so it may be that it took me longer than average. But I think the course material could have been spread over say 6 weeks for lighter load on the students. All best to the team!

創建者 Oleg

•Nov 10, 2018

It was my first Bayesian course. Good introduction! However more accent should be placed on intuitive understanding rather than mathematical formalism. To be fair that the issue not only with this course, that the issue with 90% of all stat courses/books. As for me, I find mathematical formalism is hard to digest, intuitive understanding should come first ... May be it's just because of my limited knowledge of stats. I'll update my belief once I get better understanding of stats:) Thank you very much Dr Lee!

創建者 Robert Tabell

•Nov 07, 2018

Great course for beginners as well as those that need a refresher on the basics!

創建者 Ekaterini Tarasidou

•Oct 31, 2018

I found the need to search for most of the material needed to understand the lessons in other sources. Other than than it was a relatively easy class, which covers nearly the basics. This is not a tutorial on Data Analysis on R, although a short introduction is provided.